
Dogan Ibrahim

Mastering the
Arduino Uno R4

Programming and Projects for the Minima and WiFi

Mastering the
Arduino Uno R4
Programming and Projects
for the Minima and WiFi

Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno
R3 board is likely to score as the most popular Arduino family member
so far, and this workhorse has been with us for many years. Recently, the
new Arduino Uno R4 was released, based on a 48-MHz, 32-bit Cortex-M4
processor with a huge amount of SRAM and flash memory. Additionally,
a higher-precision ADC and a new DAC are added to the design. The
new board also supports the CAN Bus with an interface.

Two versions of the board are available: Uno R4 Minima, and Uno R4
WiFi. This book is about using these new boards to develop many diffe-
rent and interesting projects with just a handful of parts and external
modules, which are available as a kit from Elektor. All projects described
in the book have been fully tested on the Uno R4 Minima or the Uno R4
WiFi board, as appropriate.

The project topics include the reading, control, and driving of many compo-
nents and modules in the kit as well as on the relevant Uno R4 board,
including

	> LEDs
	> 7-segment displays
(using timer interrupts)

	> LCDs
	> Sensors
	> RFID Reader
	> 4×4 Keypad
	> Real-time clock (RTC)
	> Joystick
	> 8×8 LED matrix

	> Motors
	> DAC
(Digital-to-analog converter)

	> LED matrix
	> WiFi connectivity
	> Serial UART
	> CAN bus
	> Infrared controller and receiver
	> Simulators

… all in creative and educational ways with the project operation and
associated software explained in great detail.

Prof Dogan Ibrahim has a BSc
(Hons) degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing and Microprocessors.
Dogan has worked in many
organizations and is a Fellow of
the Institution of Engineering and
Technology (IET) in the UK and
is a chartered electrical engineer.
Dogan is an author of over 100
technical books and over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields. Dogan is a
certified Arduino professional and
has many years of experience with
almost all types of microprocessors
and microcontrollers.

All programs discussed in this
guide are contained in an archive
you can download free of charge
from the Elektor website. Head to
elektor.com/books and enter the
book title in the search box.

M
astering the A

rduino U
no R4 • D

ogan Ibrahim
Elektor International Media
www.elektor.com

books booksbooks books

Cover Mastering the Arduino Uno - UK.indd Alle pagina'sCover Mastering the Arduino Uno - UK.indd Alle pagina's 13-09-2023 11:2013-09-2023 11:20

Mastering the Arduino Uno R4
Programming and Projects for the Minima and WiFi

●

Dogan Ibrahim

Mastering the Arduino Uno R4 - UK.indd 3Mastering the Arduino Uno R4 - UK.indd 3 13-09-2023 11:1313-09-2023 11:13

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration

The author, editor, and publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.
All the programs given in the book are Copyright of the Author and Elektor International Media. These programs
may only be used for educational purposes. Written permission from the Author or Elektor must be obtained before
any of these programs can be used for commercial purposes.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● �ISBN 978-3-89576-578-0	 Print
ISBN 978-3-89576-579-7	 eBook

● �© Copyright 2023: Elektor International Media B.V.
Editors: Alina Neacsu; Jan Buiting MA
Prepress Production: D-Vision, Julian van den Berg
Print:	 Ipskamp Printing, Enschede (NL)

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Mastering the Arduino Uno R4 - UK.indd 4Mastering the Arduino Uno R4 - UK.indd 4 13-09-2023 11:1313-09-2023 11:13

Contents

● 5

Contents

Preface . 11

Chapter 1 ● The Arduino Uno R4 . 12

1.1 Overview . 12

1.2 The Arduino Uno R4 against Uno R3 . 13

1.3 The Arduino Uno R4 Minima hardware . 15

1.4 The Arduino Uno R4 Projects Kit . 20

Chapter 2 ● Arduino Uno R4 Program Development . 23

2.1 Overview . 23

2.2 Installing the Arduino IDE 2.1.0 . 24

2.3 Software-only programs . 26

2.3.1 Example 1: Sum of integer numbers . 26

2.3.2 Example 2: Table of squares . 29

2.3.3 Example 3: Volume of a cylinder . 30

2.3.4 Example 4: Centigrade to Fahrenheit . 31

2.3.5 Example 5: Times table . 33

2.3.6 Example 6: Table of trigonometric sine . 34

2.3.7 Example 7: Table of trigonometric sine, cosine and tangent 36

2.3.8 Example 8: Integer calculator . 37

2.3.9 Example 9: Dice . 40

2.3.10 Example 10: Floating point calculator . 41

2.3.11 Example 11: Binary, octal, hexadecimal . 43

2.3.12 Example 12: String functions . 44

2.3.13 Example 13: Initializing an array . 46

2.3.14 Example 14: Character functions . 48

2.3.15 Example 15: Solution of a quadratic equation . 50

2.3.16 Example 16: Lucky day of the week . 53

2.3.17 Example 17: Factorial of a number . 54

2.3.18 Example 18: Add two square matrices . 56

Chapter 3 ● Hardware Projects with LEDs . 59

3.1 Overview . 59

Contents

Mastering the Arduino Uno R4 - UK.indd 5Mastering the Arduino Uno R4 - UK.indd 5 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 6

3.2 Project 1: Blinking LED – using the on-board LED . 59

3.3 Project 2: Blinking LED – using an external LED . 60

3.4 Project 3: LED flashing SOS . 63

3.5 Project 4: Alternately blinking LEDs . 64

3.6 Project 5: Chaser-LEDs . 67

3.7 Project 6: Chasing LEDs 2 . 70

3.8 Project 7: Binary counting LEDs . 72

3.9 Project 8: Random flashing LEDs - Christmas lights . 74

3.10 Project 9: Button controlled LED . 75

3.11 Project 10: Controlling the LED flashing rate - external interrupts 80

3.12 Project 11: Reaction timer . 83

3.13 Project 12: LED color wand . 85

3.14 Project 13: RGB fixed colors . 87

3.15 Project 14: Traffic lights . 89

3.16 Project 15: Traffic lights with pedestrian crossings . 94

3.17 Project 16: Using the 74HC595 shift register – binary up counter 100

3.18 Project 17: Using the 74HC595 shift register - random flashing 8 LEDs 103

3.19 Project 18: Using the 74HC595 shift register - chasing LEDs 104

3.20 Project 19: Using the 74HC595 shift register - turn ON a specified LED 105

3.21 Project 20: Using the 74HC595 shift register - turn ON specified LEDs 107

Chapter 4 ● 7-Segment LED Displays . 109

4.1 Overview . 109

4.2 7-Segment LED display structure . 109

4.3 Project 1: 7-Segment 1-digit LED counter . 111

4.4 Project 2: 7-Segment 4-digit multiplexed LED display . 114

4.5 Project 3: 7-Segment 4-digit multiplexed LED display counter -
timer interrupts . 119

4.6 Project 4: 7-Segment 4-digit multiplexed LED display counter -
blanking leading zeroes . 124

4.7 Project 5: 7-Segment 4-digit multiplexed LED display - reaction timer 128

4.8 Project 6: Timer interrupt blinking on-board LED . 133

Chapter 5 ● Liquid Crystal Displays . 136

5.1 Overview . 136

Mastering the Arduino Uno R4 - UK.indd 6Mastering the Arduino Uno R4 - UK.indd 6 13-09-2023 11:1313-09-2023 11:13

Contents

● 7

5.2 The I2C bus . 136

5.3 I2C ports of the development board . 137

5.4 I2C LCD . 137

5.5 Project 1: Display text on the LCD . 140

5.6 Project 2: Scrolling text on the LCD . 142

5.7 Project 3: Display custom characters on the LCD . 144

5.8 Project 4: LCD based conveyor belt goods counter . 145

5.9 Project 5: LCD based accurate clock using timer interrupts 149

5.10 Project 6: LCD dice . 154

Chapter 6 ● Sensors . 157

6.1 Overview . 157

6.2 Project 1: Analog temperature sensor . 157

6.3 Project 2: Voltmeter . 160

6.4 Project 3: On/off temperature controller . 161

6.5 Project 4: Darkness reminder – using a light-dependent resistor (LDR) 164

6.6 Project 5: Tilt detection . 167

6.7 Water level sensor . 169

6.7.1 Project 6: Displaying water level . 169

6.7.2 Project 7: Water level controller . 172

6.7.3 Project 8: Water flooding detector with buzzer . 174

6.8 Project 9: Sound detection sensor — control the relay by clapping hands 175

6.9 Project 10: Flame sensor - fire detection with relay output 177

6.10 Project 11: Temperature and humidity display . 180

6.11 Project 12: Generating musical tones - melody maker 184

Chapter 7 ● The RFID Reader . 187

7.1 Overview . 187

7.2 Project 1: Finding the Tag ID . 187

7.3 Project 2: RFID door lock access with relay . 190

Chapter 8 ● The 4×4 Keypad . 194

8.1 Overview . 194

8.2 Project 1: Display the pressed key code on the Serial Monitor 195

8.3 Project 2: Integer calculator with LCD . 198

Mastering the Arduino Uno R4 - UK.indd 7Mastering the Arduino Uno R4 - UK.indd 7 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 8

8.4 Project 3: Keypad door security lock with relay . 203

Chapter 9 ● The Real-Time Clock (RTC) Module . 207

9.1 Overview . 207

9.2 The supplied RTC module . 207

9.3 Project 1: RTC with Serial Monitor . 207

9.4 Project 2: RTC with LCD . 211

9.5 Project 3: Temperature and humidity display with time stamping 213

9.6 Using the built-in RTC . 216

9.6.1 Project 4: Setting and displaying the current time . 216

9.6.2 Project 5: Periodic interrupt every 2 seconds . 218

Chapter 10 ● The Joystick . 221

10.1 Overview . 221

10.2 The joystick . 221

10.3 Project 1 - Reading analog values from the joystick . 221

Chapter 11 ● The 8×8 LED Matrix . 226

11.1 Overview . 226

11.2 The supplied 8×8 LED matrix . 226

11.3 Project 1: Displaying shapes . 227

Chapter 12 ● Motors: Servo and Stepper . 231

12.1 Overview . 231

12.2 The servo motor . 231

12.2.1 Project 1: Test-rotate the servo . 232

12.2.2 Project 2: Servo sweep . 234

12.2.3 Project 3: Joystick-controlled servo . 235

12.3 The stepper motor . 237

12.3.1 Project 4: Rotate the motor clockwise and then anticlockwise 238

Chapter 13 ● The Digital To Analog Converter (DAC) . 241

13.1 Overview . 241

13.2 Project 1: Generating a square wave with 2 V amplitude 241

13.3 Generating sine wave – using the analogWave library 242

13.3.1 Project 2: Generate a sine wave . 243

Mastering the Arduino Uno R4 - UK.indd 8Mastering the Arduino Uno R4 - UK.indd 8 13-09-2023 11:1313-09-2023 11:13

Contents

● 9

13.3.2 Project 3: Sine wave sweep frequency generator . 244

13.3.3 Project 4: Generate sine wave whose frequency changes with potentiometer . 245

13.3.4 Project 5: Generate a square wave with frequency of 1 kHz and
amplitude of 1 V . 247

Chapter 14 ● �Using the EEPROM, the Human Interface Device, and PWM 248

14.1 Overview . 248

14.2 The EEPROM memory . 248

14.3 Human Interface Device (HID) . 249

14.4 Project 1: Keyboard control to launch Windows programs 250

14.5 The Pulse Width Modulation (PWM) . 253

14.5.1 PWM channels of the Arduino Uno R4 . 255

14.5.2 Project 2: LED dimming using PWM . 255

Chapter 15 ● The Arduino Uno R4 WiFi . 257

15.1 Overview . 257

15.2 The LED matrix . 260

15.2.1 Project 1: Using LED matrix 1 - creating a large + shape 260

15.2.2 Project 2: Creating images by setting bits . 262

15.2.3 Project 3: Using LED matrix 2 - creating a large + shape 265

15.2.4 Project 4: Animation - displaying a word . 267

15.3 Using the WiFi . 269

15.3.1 UDP and TCP . 269

15.3.2	UDP communication . 270

15.3.3 TCP communication . 271

15.3.4	Project 5: Controlling the Arduino Uno R4 WiFi on-board LED from
a smartphone using UDP . 272

15.4 Bluetooth . 276

15.4.1 Bluetooth BLE . 277

15.4.2 Bluetooth BLE Software Model . 278

Chapter 16 ● Serial Communications . 280

16.1 Overview . 280

16.2 Project 1: Receiving ambient temperature from an Arduino Uno R3 281

Chapter 17 ● Using an Arduino Uno Simulator . 285

Mastering the Arduino Uno R4 - UK.indd 9Mastering the Arduino Uno R4 - UK.indd 9 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 10

17.1 Why simulation? . 285

17.2 The Wokwi simulator . 286

17.2.1 Project 1: A simple project simulation - flashing LED 287

17.2.2 Project 2: Displaying text on LCD . 288

17.2.3 Project 3: LCD seconds counter . 290

Chapter 18 ● The CAN bus . 292

18.1 Overview . 292

18.2 The CAN bus . 292

18.2.1 CAN bus termination . 292

18.2.2 CAN bus data rate . 294

18.2.3 Cable stub length . 295

18.2.4 CAN bus node . 295

18.2.5 CAN bus signal levels . 296

18.2.6 CAN_H voltage . 297

18.2.7 The CAN_L voltage . 297

18.2.8 Bus arbitration . 297

18.2.9 Bus transceiver . 297

18.2.10 CAN connectors . 298

18.3 Arduino Uno R4 CAN bus interface . 300

18.3.1 CAN bus transceivers . 300

18.4 Project 1: Arduino Uno R4 WiFi to Arduino Uno R4 Minima CAN bus
communication . 301

18.5 Project 2: Sending the temperature readings over the CAN bus 306

Chapter 19 ● Infrared Receiver and Remote Controller . 311

19.1 Overview . 311

19.2 The supplied infrared receiver . 311

19.3 The supplied infrared remote control transmitter unit 311

19.4 Operation of an infrared remote control system . 312

19.5 Project 1: Decoding the IR remote control codes . 314

19.6 Project 2: Remote relay activation/deactivation . 317

19.7 Project 3: Infrared remote stepper motor control . 320

Index . 325

Mastering the Arduino Uno R4 - UK.indd 10Mastering the Arduino Uno R4 - UK.indd 10 13-09-2023 11:1313-09-2023 11:13

● 11

Preface

"Arduino" is an open-source microcontroller development system that incorporates system
hardware, an Integrated Development Environment (IDE), and a large number of libraries.
Arduino is supported by a large community of programmers, electronic engineers, enthu-
siasts, and academics. There are several distinctive designs of the basic Arduino board.
Although they are intended for diverse types of applications, they can all be programmed
using the same IDE, and, in general, programs can be transported ("ported") between dif-
ferent boards. This is probably one of the reasons for the popularity of the Arduino family.
Arduino is also supported by a large number of software libraries for many interface devices
that can easily be included in your programs. Using these libraries makes programming
relatively easy and speeds up the programming time. Using libraries also makes it easier to
test your programs since most libraries have already been fully tested and working.

The Arduino Uno R3 board probably ranks as the most popular Arduino family member
to date and has been with us for many years. Based on the low-cost 8-bit ATmega328P
processor, the Uno R3 has been used by students and hobbyists in many beginning and
intermediate-level, low-speed projects requiring small to medium amounts of memory.
Perhaps one of the attractive points of the Uno R3 was its powerful IDE and the simplicity
of using it to develop projects in relatively short times.

Recently, the new Arduino Uno R4 was announced. This new board is compatible with the
earlier Uno R3 but offers highly improved specifications compared to Uno R3. The new
Arduino Uno R4 is based on a 48 MHz 32-bit Cortex-M4 processor with a large amount of
SRAM and flash memory. Additionally, a higher-precision ADC and a new DAC are added to
the design. The contemporary design also supports the CAN bus interface. Two versions of
the board are available: Uno R4 Minima, and Uno R4 WiFi.

This book is about using these new boards to develop many different and interesting pro-
jects. The projects given in the book have been fully tested with just a handful of parts
and external modules, which are available as a kit from Elektor. The block diagrams, circuit
diagrams, full program listings, and complete program descriptions are given for all the
projects in the book. You should find it easy to build the project hardware and then follow
the software descriptions given for the projects. It should also be relatively easy to modify
the hardware and software for your own project applications.

I hope that you enjoy reading the book and at the same time learn how to use the Arduino
Uno R4 Minima or the R4 WiFi models in your innovative projects.

Dogan Ibrahim
London, 2023

Publisher's Notice: All programs discussed in this Guide are contained in an archive file
you can download free of charge from the Elektor website. Head to www.elektor.com/
books and enter the book title in the Search box.

Mastering the Arduino Uno R4 - UK.indd 11Mastering the Arduino Uno R4 - UK.indd 11 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 12

Chapter 1 ● The Arduino Uno R4

1.1 Overview
The Arduino project started out as a tool for students at the Interactive Design Insti-
tute, Ivrea in Italy back in 2005. The aim of this project was to provide low-cost and easy-
to-use hardware and software to beginner students and hobbyists to create simple projects
using sensors and actuators. The name "Arduino" comes from the bar named Arduin of
Ivrea where the project's founders used to meet for drinks. The name of this bar came from
the Margrave Arduin of Ivrea, who was King of Italy from 1002 to 1014.

The initial Arduino project team consisted of Massimo Banzi, David Cuartielles, Tom Igoe,
Gianluca Martino, and David Mellis. In 2003 Hernando Barragan created the development
platform Wiring as a master's thesis at the Institute Ivrea. Wiring was an open-source
electronics platform consisting of a programming language, an integrated development
environment (IDE), and a single-board microcontroller. This project was developed under
the supervision of Massimo Banzi and Casey Reas. The Wiring platform included a printed
circuit board with an ATmega128 microcontroller, an IDE, and some library functions. Later
in 2005, Massimo Banzi, David Mellis, and David Cuartielles extended the Wiring platform
by adding support for the ATmega8 microcontroller which was cheaper. This new project
was named Arduino. The project was so successful that after developing less expensive
versions, by mid-2011 over 300,000 copies of Arduino were produced commercially and by
2013 this number increased to over 800,000.

Arduino is an open-source hardware where the designs are distributed under a Creative
Commons license and are freely available. The only point is that the developers are re-
quested the name Arduino to be reserved for the official product and not be used for similar
copy work without permission.

One of the nice features of the Arduino series is that a pre-programmed boot loader is
used on the on-board processor. Users can develop their programs using the IDE and then
upload their programs to the Arduino processor with the help of this boot loader program.
The I/O pins are available at female headers located on either side of the board. This makes
the hardware development very easy as jumper wires can be used to make connections to
the board.

The original Arduino board was manufactured by the Italian company called Smart Projects.
Many versions of the Arduino have been developed over the years by several companies.
Some versions are:

•	Arduino Diecimila
•	Arduino Uno R2
•	Arduino Leonardo
•	Arduino RS232
•	Arduino Pro
•	Arduino Mega
•	Arduino LilyPad

Mastering the Arduino Uno R4 - UK.indd 12Mastering the Arduino Uno R4 - UK.indd 12 13-09-2023 11:1313-09-2023 11:13

Chapter 1 ● The Arduino Uno R4

● 13

•	Arduino Robot
•	Arduino Esplora
•	Arduino Yun
•	Arduino Fio
•	Arduino Ethernet
•	Arduino Due
•	Arduino Nano
•	Arduino Uno SMD R3
•	Arduino Uno R3
•	Arduino MKR Zero
•	Arduino Zero
•	… and many more

The Arduino family has been so popular that in 2022, its revenue amounted to over US$237
million, including a large portion of online sales via the Internet.

Two new versions of the Arduino have recently been announced: Arduino Uno R4 Mini-
ma, and Arduino Uno R4 WiFi. In this book, you will be developing projects using both
the Arduino Uno R4 Minima and the Arduino Uno R4 WiFi. The new two boards are similar
to the very popular Arduino Uno R3 board but they have been expanded in many ways.

1.2 The Arduino Uno R4 against Uno R3
A comparison of the Uno R3 and Uno R4 is given in Table 1.1. Notice that almost all the
projects and libraries used with the Uno R3 can be used with the Uno R4 without any
modifications. It is recommended however to upgrade any libraries which may have been
modified specifically for the Uno R4.

Feature Arduino Uno R3 Arduino Uno R4

Processor ATmega328P Renesas RA4M1

Word length 8 32

Clock speed 16 MHz 48 MHz

SRAM 2 KB 32 KB

Flash memory 32 KB 256 KB

EEPROM 1 KB 8 KB

Operating voltage 5 V 5 V

Timers 3 10

Capacitive touch sensing None 27 channels

Temperature sensor None 1

USB connector Type B USB-C

ADC 10-bit 14-bit

DAC None 12-bit

SPI 1 1

Mastering the Arduino Uno R4 - UK.indd 13Mastering the Arduino Uno R4 - UK.indd 13 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 14

I2C 1 2

Qwiic I2C None 1 (WiFi version only)

Operating voltage 5 V 5 V

Wi-Fi None WiFi version only

RTC None 1 (WiFi version only)

Human Interface Device None Yes

SWD debug None 1

Bluetooth BLE None WiFi version only

CAN bus support None 1

Op Amp None 1

128x8 LED matrix None WiFi version only

Input voltage 7–12 V 6–24 V

Analog inputs 6 6

PWM pins 6 6

USB USB-B USB-C

Table 1.1: Comparison of the Arduino Uno R3 and Uno R4.

The Arduino Uno R4 features the Renesas RA4M1 processor, which is an Arm 32-bit Cor-
tex-M4 processor, running at 48 MHz. The Uno R3 had an ATmega328P processor with only
a 16 MHz clock. This is a 3 times increase of the clock speed over the Uno R3. Additionally,
Uno R4 has 32 KB SRAM memory compared to 2 KB on the Uno R3. The flash memory of
the R4 is 256 KB, compared to only 32 KB on the Uno R3. As a result, more complex pro-
jects requiring more memory can be developed with the Uno R4. The USB port on the Uno
R3 has been replaced with the currently standard USB-C and the maximum power supply
voltage has been increased to 24 V with improved thermal design. The processor operating
voltage is still 5 V. Arduino Uno R4 provides a CAN bus interface, allowing devices to be
connected and programmed on a CAN bus environment. The ADC converter capacity has
been increased from 12 bits to 14 bits on the Uno R4. SPI and I2C bus interfaces have been
increased from 1 to 2. The Uno R4 supports Human Interface Device (HID) which enables
users to simulate a mouse or keyboard when connected to a computer via a USB cable.
Users can send mouse movements or keystrokes to a computer. Additionally, Uno R4 in-
cludes a true 12-bit DAC converter. The analogWave library was added to make using the
DAC easy. Generating a sine, saw or square wave is as easy as calling a library function.
Of course, you can do much more with it. The Uno R4 PCB is hardware compatible with the
Uno R3. The pinout, voltage, and form factor are unchanged so that the Uno R4 can easily
replace designs that use the Uno R3. The software IDE is also compatible between the Uno
R3 and Uno R4, where an effort was made to maximize backward compatibility of the Ar-
duino libraries so that users can use the existing libraries without any modifications. Some
libraries which depend heavily on the AVR architecture may need to be re-loaded into the
IDE. A public list of such libraries will be provided by Arduino.

Mastering the Arduino Uno R4 - UK.indd 14Mastering the Arduino Uno R4 - UK.indd 14 13-09-2023 11:1313-09-2023 11:13

Chapter 1 ● The Arduino Uno R4

● 15

Compared to other Cortex-based boards such as the Raspberry Pi Pico, which uses the
Cortex M0+, the Cortex-M4 performance is about 6 times better (just to remind you, the
Raspberry Pi Pico clock runs at 125 MHz by default). As a result, the Arduino Uno R4 can be
used in highly complex real-time projects (e.g. digital control, DSP, AI, etc.) requiring large
memory and fast throughput.

As mentioned earlier, Arduino Uno R4 is available in two versions: WiFi and Minima. The
WiFi version is equipped with an Espressif S3 Wi-Fi module, making the board ideal in IoT-
based network and Bluetooth BLE applications, as well as in applications requiring Internet
connectivity. Additionally, a 128×8 LED matrix is included on the board. The Minima version
offers a cost-effective option with no WiFi or Bluetooth connectivity. In this book, all the
projects compile and run on both versions, except that the WiFi and LED Matrix
projects only compile and run on the R4 WiFi version.

In summary, the Uno R4 is a giant leap forward for Arduino as it is a truly remarkable board
that will take your microcontroller project experience to the next level. Perhaps one disad-
vantage of the Uno R4 compared to Uno R3 is its increased price.

1.3 The Arduino Uno R4 Minima hardware
Figure 1.1 shows the Arduino Uno R4 PCB layout. The PCB footpath and the placement of
the headers on the PCB are the same as the Uno R3. In the center of the PCB is the RA4M1
microcontroller. On the left-hand side of the PCB, you can see the Reset button, USB-C
connector for connecting to a PC, and the barrel connector for supplying external power.
At the rear of the PCB, you can see the 6-pin ICSP pins (SPI) and the 10-pin SWD/JTAG
pins. An on-board LED is connected to port 13 as in Uno R3. Additionally, yellow LEDs are
connected to the serial TX and RX pins to indicate serial data transmission, a green LED
indicates power to the board, and a yellow LED indicates the state of the SCK pin.

Figure 1.1: Arduino Uno R4 Minima PCB layout.

Mastering the Arduino Uno R4 - UK.indd 15Mastering the Arduino Uno R4 - UK.indd 15 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 16

On the two sides of the PCB, you have the header connectors as in the Uno R3. The headers
have the following pins (see Figure 1.2):

Short header connector:
•	6× 14-bit analog input pins (A0–A5)
•	1× 12-bit DAC (A0)
•	1× Opamp+ (A1), Opamp– (A2), Opamp Out (A3)
•	I2C SDA (A4), I2C SCL (A5)
•	Vin
•	GND
•	+5 V
•	+3.3 V output (output from the RA4M1 VCC_USB pin)
•	RESET
•	IOREF (reference for the digital logic V. Connected to + 5 V)
•	BOOT (mode selection)

Note: Analog pins A0–A5 can also be used as digital pins.

Long header connector:
•	14 × digital pins (D0–D13)
•	External interrupt (IRQ00: D2, IRQ01: D3)
•	6 × PWM pins (D3, D5, D6, D9, D10, D11)
•	UART (RX:D0, TX:D1)
•	SPI (same as on ICSP header. D13: SCK, MISO (CIPO): D12, MOSI (COPI):

D11, CS: D10)
•	CAN (RX:D5, TX: D4 on Minima, RXD13, TX:D10 on WiFi,

Note: external transceiver required)
•	GND
•	AREF (analog reference voltage, connected to +5 V through a 5.1-kΩ resistor)
•	I2C SDA (pullups not mounted)
•	I2C SCL (pullups not mounted)

ICSP connector:
•	See Table 1.2

SWD/JTAG connector:
•	See Table 1.3

Table 1.2: ICSP connector pins (source: Product Reference Manual, SKU: ABX00080).

Mastering the Arduino Uno R4 - UK.indd 16Mastering the Arduino Uno R4 - UK.indd 16 13-09-2023 11:1313-09-2023 11:13

Chapter 1 ● The Arduino Uno R4

● 17

Table 1.3: SWD/JTAG connector pins
(source: Product Reference Manual, SKU: ABX00080).

Figure 1.2: Header pins (source: Product Reference Manual, SKU: ABX00080).

The recommended operating conditions are shown in Table 1.4. Schottky diodes are used
for overvoltage and reverse polarity protection. Power can either be supplied via the VIN
pin, the barrel jack (DC jack), or via USB-C connector. If power is supplied via VIN, a

Mastering the Arduino Uno R4 - UK.indd 17Mastering the Arduino Uno R4 - UK.indd 17 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 18

buck converter steps the voltage down to 5 V. Power via USB supplies about 4.7 V (due
to Schottky barrier forward bias) to the RA4M1 microcontroller. The RA4M1 processor can
operate from +1.6 to +5.5 V and is connected to +5 V on the Arduino board. The digital
GPIOs on the RA4M1 microcontroller can handle currents of IOH = 4 mA and IOL
= 8 mA (assuming middle pin drive) current. Remember that IOL is the current
into the pin (sinking) when the pin is at logic 0, and IOH is the current from the
pin (sourcing) when the pin is at logic 1. Care must be taken not to exceed the
recommended current drives of the GPIO ports. Figure 1.3 shows a simplified power
supply connection of the Arduino Uno R4.

Table 1.4: Recommended operating conditions
(source: Product Reference Manual, SKU: ABX00080).

Figure 1.3: Simplified power supply connections.

Figure 1.4 shows the pin layout of the Arduino Uno R4 Minima board. The component layout
is shown in Figure 1.5 (taken from Product Reference Manual: SKU: ABX00080) with the
component descriptions shown in Table 1.5.

Mastering the Arduino Uno R4 - UK.indd 18Mastering the Arduino Uno R4 - UK.indd 18 13-09-2023 11:1313-09-2023 11:13

Chapter 1 ● The Arduino Uno R4

● 19

Figure 1.4: Arduino Uno R4 Minima pin layout.

Figure 1.5: Arduino Uno R4 Minima component layout.

Mastering the Arduino Uno R4 - UK.indd 19Mastering the Arduino Uno R4 - UK.indd 19 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 20

Table 1.5: Arduino Uno R4 Minima component layout.

1.4 The Arduino Uno R4 Projects Kit
The Arduino Uno Experimenting (SKU 20339) Kit available from Elektor (www.elektor.com)
includes a large number of sensors, actuators, buttons, LEDs, plus a breadboard, stepper
motor, jumper wires etc. In detail, the kit includes the following components:

•	1× RFID reader module
•	1× DS1302 clock module
•	1× 5 V stepper motor
•	1× Stepper motor 2003 drive board
•	5x Green Led
•	5× Yellow LED
•	5× Red LED
•	2× Rocker switch
•	1× Flame sensor
•	1× LM35 sensor module
•	1× Infrared receiver
•	3× Light-dependent resistor
•	1× Remote controller
•	1× Breadboard
•	4× Pushbutton (with four caps)
•	1× Buzzer
•	1× Piezo sounder
•	1× Adjustable resistor
•	1× 74HC595 shift register
•	1× 7-segment display
•	1× 4-digit 7-segment display
•	1× 8×8 Dot-matrix display
•	1× 1602 / I2C LCD module
•	1× DHT11 Temperature and humidity module
•	1× Relay module
•	1× Sound module
•	Set of Dupont cables
•	Set of Breadboard cables
•	1× Water sensor
•	1× USB cable

Mastering the Arduino Uno R4 - UK.indd 20Mastering the Arduino Uno R4 - UK.indd 20 13-09-2023 11:1313-09-2023 11:13

Chapter 1 ● The Arduino Uno R4

● 21

•	1× PS2 Joystick
•	5× 1 kΩ resistor
•	5× 10 kΩ resistor
•	5× 220Ω resistor
•	1× 4×4 keypad module
•	1× SG90 Servo
•	1× RFID card
•	1× RGB module
•	2× jumper cap
•	1× 9 V Battery DC clip-on cable

The kit is supplied in a plastic box with a lid as shown in Figure 1.6 (note: the actual pack-
aging and contents of the kit as received may differ from the photo).

Figure 1.6: The kit supplied in a plastic box.

Figure 1.7 shows the supplied components and the Arduino Uno R4, which is not included
and must be purchased separately. A close-up picture of the included sensors, actuators,
and displays is shown in Figure 1.8. Figure 1.9 shows a close-up picture of the supplied
LEDs, resistors, buttons, buzzers, breadboard and wire jumpers.

Mastering the Arduino Uno R4 - UK.indd 21Mastering the Arduino Uno R4 - UK.indd 21 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 22

Figure 1.7: Supplied components.

Figure 1.8: Close-up picture of sensors, actuators, and displays.

Figure 1.9: Close-up picture of the LEDs, resistors, buttons, wires, etc.

Mastering the Arduino Uno R4 - UK.indd 22Mastering the Arduino Uno R4 - UK.indd 22 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 23

Chapter 2 ● Arduino Uno R4 Program Development

2.1 Overview
The Arduino code is written in the C++ language, which is currently one of the most popu-
lar languages used to program microcontrollers. Arduino can be programmed using either
the Desktop Arduino IDE or the Arduino Web Editor. The IDE requires the software to
be installed on your PC. This is an Integrated Development Environment (IDE) that consists
of an editor, compiler, debugger, and tools to upload the compiled code to the processor
on the development board. An Arduino program is called a sketch, which is compiled
into machine code and uploaded to the target processor. Arduino Web Editor enables the
programmer to develop, compile, and upload programs using an online browser with the
advantage that the online tool is always up-to-date and includes the latest libraries and
features. In this book, you will be using the IDE. Interested readers can search for Arduino
Web Editor in Google and create an account to sign in and use it.

The Arduino IDE has been developed over a decade and there are several versions of it.
The latest stable version is 2.1 released in March 2022. Version 1.8.19 has been popular for
many years and is still used by many programmers. New version 2.1.0 is the recommended
version since it is faster and easier to use than version 1.8.19. The author has used version
2.1.0 in all the projects in this book. Readers may prefer to use the same version in their
projects.

In this chapter, you will learn how to install version 2.1.0 of the IDE, which was the latest
version at the time of authoring this book. Simple software-only programs are given in this
chapter to review the principles of programming using the Arduino IDE. In the next chap-
ters, you will be using the newly released Arduino Uno R4 Minima/WiFi development
boards together with the supplied components of the bundle in many real-time project
applications.

Further information on Arduino IDE, Web Editor, and related tools can be obtained from the
links given in Table 2.1.

Table 2.1: Links to Arduino IDE, Web Editor, and related
tools (Product Reference Manual, SKU: ABX00080).

Mastering the Arduino Uno R4 - UK.indd 23Mastering the Arduino Uno R4 - UK.indd 23 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 24

2.2 Installing the Arduino IDE 2.1.0
The latest version of the Arduino IDE can be installed from the following website:

	 https://www.arduino.cc/en/software

Select your processor from the DOWNLOAD OPTIONS at the right (Figure 2.1). Click
JUST DOWNLOAD (unless you want to support by contributing). The author installed it on
a Windows 10 laptop and at the time of drafting this book the latest version file name was:
Arduino-ide_2.1.0-Windows_64bit.exe.

Figure 2.1: Select your processor to install.

You now have to install the Board Package for your Arduino Uno R4 Minima. The steps are:

•	Start the Arduino IDE.

•	Click to Open the Boards Manager at the top left of the screen (Figure 2.2).

Figure 2.2: Open the Boards manager.

•	Search for ARDUINO UNO R4 (Figure 2.3) and click INSTALL to install it. At the
time of drafting this book, the version was: 1.0.1.

Mastering the Arduino Uno R4 - UK.indd 24Mastering the Arduino Uno R4 - UK.indd 24 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 25

Figure 2.3: Click INSTALL to install the Uno R4 boards.

•	Click Boards Manager to close the left window.

•	You should be able to select the Arduino Uno R4 board from the board selector
at the top left of the screen (Figure 2.4). Connect your Arduino Uno R4 Minima
(or WiFi) to your PC via a USB-C cable.

•	Click Tools  Port and select the serial port connected to your Uno R4.

Figure 2.4: Select: Arduino Uno R4 Minima.

You are now ready to develop programs and upload them to your Arduino Uno R4 Minima/
WiFi processor on your development board.

Before looking at some example programs, it is worthwhile to learn some of the commonly
used menu options offered by the IDE.

File: with this menu option you can open existing programs, save programs, open example
programs, and set the IDE working environment (e.g., Preferences…).

Edit: with this menu option you can cut, paste, select, go to a specified line, change inden-
tation and font size, and find text in a file.

Sketch: with this menu option you can compile your program, upload the compiled pro-
gram to the target processor, include libraries, add files and some other options that you
will not be using.

Mastering the Arduino Uno R4 - UK.indd 25Mastering the Arduino Uno R4 - UK.indd 25 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 26

Tools: with this menu option you can manage libraries, configure the serial monitor and
serial plotter, select and configure the development board that you will be using, and burn
a new bootloader.

Help: this menu option displays various help items on selected topics. Additionally, it dis-
plays the version number of the currently used IDE (Figure 2.5). e.g., Version: 2.1.0

Figure 2.5: Displaying the IDE version number.

2.3 Software-only programs
In this chapter, simple software-only programs are given to review the basic principles of
programming in C language using the Arduino IDE. The human interface (e.g. display and
keyboard) to these programs is the Serial Monitor of the IDE. The aim here has been to
review the C language programming concepts by developing simple programs, and then
uploading and running them on your development board. Readers who have a good work-
ing knowledge of the C language and who are familiar with the Serial Monitor can skip this
chapter.

2.3.1 Example 1: Sum of integer numbers
Write a program to read an integer number N from the keyboard and then calculate and
display the sum of all the integer numbers from 1 to N.

Solution 1
Figure 2.6 shows the program listing (Program: sumN). Comments are used at the be-
ginning of the program to describe the function of the program. Also, the names of the
author and the program and the date of development of the program are all listed here.
It is strongly recommended by the author to include comments in your programs to make
them easy to follow and also easy to modify in the future.

The setup() function is executed only once at the beginning of the program. Inside this
function, the Serial Monitor is configured to run at 9600 baud (you may choose a different
baud rate if you wish).

The main program runs inside the function loop(). Here, variables i, N, and Sum are
declared as integers and Sum is cleared to 0. The program prompts the user to enter N
which is read using the built-in function parseInt(). The program checks if data is availa-
ble before reading from the keyboard. Then, a for loop is formed where the sum of all the
integer numbers from 1 to N are calculated and stored in variable Sum. The sum is finally

Mastering the Arduino Uno R4 - UK.indd 26Mastering the Arduino Uno R4 - UK.indd 26 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 27

displayed as an integer using a println() function. Notice that the println() function prints
a carriage return and line feed after displaying the data. The program is stopped by using a
while() statement at the end, otherwise the loop() function will repeat forever.

The steps to test the program are as follows:

•	Connect your Arduino Uno R4 development board to the PC and configure the
serial link.

•	Type your program as in Figure 2.6 (or load from the Elektor website of the
book) and then save it with a suitable name, e.g., sumN.

•	Click Sketch  Verify/Compile to compile the program. The status of the
compilation will be displayed in the bottom panel as Compiling sketch…. If
there are any errors, you should go back to your program to correct the errors.
If there are no errors, then the bottom panel will display as shown in Figure 2.7
(Click Output at the bottom panel to see this message).

•	Click Sketch  Upload to upload the correctly compiled code to the processor
on your development board. You should see the message Done uploading at
the bottom part of the screen.

•	Make sure the Baud rate is set to 9600. Click Serial Monitor at the top of the
bottom panel. (Figure 2.8). If Serial Monitor is not available, click the Serial
Monitor icon at the top right corner of the display.

//--
// SUM OF INTEGER NUMBERS FROM 1 to N
// ==================================
//
// This program calculates and displays the sum of integer numbers
//
// Author: Dogan Ibrahim
// File : sumN
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 int i, N, Sum = 0;

Mastering the Arduino Uno R4 - UK.indd 27Mastering the Arduino Uno R4 - UK.indd 27 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 28

 Serial.print("How many numbers are there ? ");
 while(Serial.available() <= 0);
 N = Serial.parseInt();
 Serial.print(N);

 for (i = 1; i <= N; i++) // Do for 1 to N
 {
 Sum = Sum + i; // Calculate the sum
 }

 Serial.println(); // Print new line
 Serial.print("Sum of numbers from 1 to "); // Display "Sum = "
 Serial.print(N); // Display N
 Serial.print(" are: "); // Display " are: "
 Serial.println(Sum); // Display the sum

 while(1); // Stop the program
}

 Figure 2.6: Program: sumN.

Figure 2.7: Successful compilation.

Figure 2.8: Serial Monitor window.

•	You should see the text How many numbers are there ? displayed at the
Serial Monitor window. For example, enter 10 where it says: Message (Enter
to send message to 'Arduino UNO R4' Minima…) and press the Enter key
on your PC. You should see 55 displayed which is the sum of integer numbers
from 1 to 10 as shown in Figure 2.9.

Figure 2.9: Displaying the sum of numbers from 1 to 10.

You should follow the steps given in this program in order to test the other programs given
in the following sections of this chapter.

Mastering the Arduino Uno R4 - UK.indd 28Mastering the Arduino Uno R4 - UK.indd 28 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 29

2.3.2 Example 2: Table of squares
Write a program to tabulate the squares of integer numbers from 1 to 10.

Solution 2
Figure 2.10 shows the program listing (Program: squares). The Serial Monitor is initialized
as in the previous example. A for loop is set up in the main program loop, which tabulates
the squares of numbers from 1 to 10. The display items are separated with a tab (i.e. "\t").

//--
// TABLE OF SQUARES
// =================
//
// This program displays table of squares of integers from 1 to 10
//
// Author: Dogan Ibrahim
// File : squares
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 int i, N;

 Serial.println("TABLE OF SQUARES FROM 1 TO 10");
 Serial.println("=============================");
 Serial.println("N\tSQUARE");

 for (i = 1; i <= 10; i++) // Do for 1 to N
 {
 N = i * i; // Calculate the square
 Serial.print(i);
 Serial.print("\t");
 Serial.println(N);
 }

 while(1); // Stop the program
}

Figure 2.10: Program: squares.

Mastering the Arduino Uno R4 - UK.indd 29Mastering the Arduino Uno R4 - UK.indd 29 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 30

Figure 2.11 shows the output from the program, displayed on the Serial Monitor.

Figure 2.11: Output from the program.

2.3.3 Example 3: Volume of a cylinder
Write a function to return the volume of a cylinder where the radius and height should be
passed as arguments to the function. Use the function in a program to calculate and display
the area of the cylinder whose radius is 10 cm and height 15 cm.

Solution 3
The volume of a cylinder whose radius and height are r and h respectively is given by:

	 Area = π r2 h

Figure 2.12 shows the program listing (Program: cylarea). Function area receives the
radius and height of the cylinder as floating point numbers and returns the volume to the
main program which then displays the volume on the Serial Monitor.

//--
// VOLUME OF A CYLINDER
// ====================
//
// This program calculates and displays the volume of a cylinder
//
// Author: Dogan Ibrahim
// File : cylarea
// Date : June, 2023
//--
#define pi 3.14159
float r = 10.0;
float h = 15.0;

void setup()
{
 Serial.begin(9600);

Mastering the Arduino Uno R4 - UK.indd 30Mastering the Arduino Uno R4 - UK.indd 30 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 31

 delay(5000);
}

//
// Function to calculate the volume
//
float volume(float radius, float height)
{
 float vol;
 vol = pi * radius * radius * height;
 return vol;
}

void loop()
{
 float cylinder;

 Serial.println("Volume of a cylinder with r = 10 cm and h = 15 cm");
 Serial.println("===");

 cylinder = volume(r, h);
 Serial.print("Volume = ");
 Serial.print(cylinder);
 Serial.println(" cm3");

 while(1); // Stop the program
}

Figure 2.12: Program: cylarea.

Figure 2.13 shows the output from the program where the radius and height are set to 10
cm and 15 cm, respectively at the beginning of the program.

Figure 2.13: Output from the program.

2.3.4 Example 4: Centigrade to Fahrenheit
Write a program to receive the temperature as Centigrade, convert it to Fahrenheit, and
then display it on the Serial Monitor. You should read the temperature from the keyboard.

Mastering the Arduino Uno R4 - UK.indd 31Mastering the Arduino Uno R4 - UK.indd 31 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 32

Solution 4
Given the temperature in degrees C, it can be converted into degrees F using the following
formula:

	 F = 1.8 × C + 32

Figure 2.14 shows the program listing (Program: CtoF). Function ToF receives degrees C
as its argument, converts it in degrees F and returns to the main program. The temperature
in degrees Centigrade is read from the keyboard.

//--
// CELSIUS TO FAHRENHEIT
// =====================
//
// This program converts Celsius to Fahrenheit
//
// Author: Dogan Ibrahim
// File : CtoF
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

//
// Function to convert Degrees C to Degrees F
//
float ToF(float C)
{
 return (1.8 * C + 32);
}

void loop()
{
 float F;
 int C;

 Serial.println("Enter temperature as Degreec C: ");
 while(Serial.available() <= 0);
 C = Serial.parseInt(); // Read Degrees C

 F = ToF(C); // COnvert to F
 Serial.print(C);
 Serial.print(" Degreec C = ");

Mastering the Arduino Uno R4 - UK.indd 32Mastering the Arduino Uno R4 - UK.indd 32 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 33

 Serial.print(F);
 Serial.println(" Degrees F");

 while(1); // Stop the program
}

Figure 2.14: Program: CtoF.

Figure 2.15 shows the output from the program where 100 degrees centigrade is converted
into Fahrenheit and displayed on the Serial Monitor.

Figure 2.15: Output from the program.

2.3.5 Example 5: Times table
Write a program to read an integer number and then tabulate the times table from 1 to 12
for the given number.

Solution 5
Figure 2.16 shows the program listing (Program: times). An integer number is read from
the keyboard and stored in variable N. Then a for loop is set up that runs from 1 to 12.
Number N is multiplied by 1 to 12 inside this loop and is then displayed on the Serial Mon-
itor.

//--
// TIMES TABLE
// ===========
//
// This program reads an integer number and then tabulates the time table
//
// Author: Dogan Ibrahim
// File : times
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 int N, i;

Mastering the Arduino Uno R4 - UK.indd 33Mastering the Arduino Uno R4 - UK.indd 33 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 34

 Serial.print("Enter the number: "); // Prompt for a number
 while(Serial.available() <= 0);
 N = Serial.parseInt(); // Read a number
 Serial.println(N); // Display the number

 Serial.print("\nTimes table for number "); // Heading
 Serial.println(N);

 for(i = 1; i <=12; i++) // Do 12 times
 {
 Serial.print(i); // Display 1..12
 Serial.print(" X "); // Display " X "
 Serial.print(N); // Display N
 Serial.print(" = "); // Display " = "
 Serial.println(i * N); // Dislay the product
 }

 while(1); // Stop the program
}

Figure 2.16: Program: times.

Figure 2.17 shows the output from the program where the times table for number 5 is
displayed.

Figure 2.17: Output from the program.

2.3.6 Example 6: Table of trigonometric sine
Write a program to tabulate the trigonometric sine between the angles of 0 to 90 degrees,
in steps of 5 degrees.

Solution 6
Figure 2.18 shows the program listing (Program: sines). After displaying a heading, a for
loop is set up which runs from 0 to 90 in steps of 5. Inside this loop, the sine of the angles

Mastering the Arduino Uno R4 - UK.indd 34Mastering the Arduino Uno R4 - UK.indd 34 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 35

are calculated. Notice that the angles for trigonometric functions must be entered in radi-
ans. Degrees are converted into radians by multiplying with Pi/180.

//--
// TRIGONOMETRIC SINE
// ==================
//
// This program displays trigonometric sine from 0 to 90 degrees
//
// Author: Dogan Ibrahim
// File : sines
// Date : June, 2023
//--
#define pi 3.14159

void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 int degree;
 float rad;

 Serial.println("TRIGONOMETRIC SINE"); // Heading
 Serial.println("==================");
 Serial.println("Degree\tSine");

 for(degree = 0; degree <=90; degree += 5) // 0 to 90
 {
 Serial.print(degree); // Display degree
 Serial.print("\t"); // Tab
 rad = degree * pi / 180.0; // Convert to radians
 Serial.println(sin(rad)); // Display sine
 }

 while(1); // Stop the program
}

Figure 2.18: Program: sines.

Figure 2.19 shows the output from the program.

Mastering the Arduino Uno R4 - UK.indd 35Mastering the Arduino Uno R4 - UK.indd 35 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 36

Figure 2.19: Output from the program.

2.3.7 Example 7: Table of trigonometric sine, cosine and tangent
Write a program to tabulate the trigonometric sine between the angles of 0 to 45 degrees,
in steps of 5 degrees.

Solution 7
The program is similar to the one given in Figure 2.18, but here cosine and tangent are also
included. Figure 2.20 shows the program listing (Program: trigs).

//--
// TRIGONOMETRIC SINE,COSINE,TANGENT
// =================================
//
// This program displays trigonometric sine,cosine,tangent
//
// Author: Dogan Ibrahim
// File : trigs
// Date : June, 2023
//--
#define pi 3.14159

void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()

Mastering the Arduino Uno R4 - UK.indd 36Mastering the Arduino Uno R4 - UK.indd 36 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 37

{
 int degree;
 float rad;

 Serial.println(«TRIGONOMETRIC FUNCTIONS»); // Heading
 Serial.println(«=======================»);
 Serial.println(«Degree\tSine\tCosine\tTangent»);

 for(degree = 0; degree <=45; degree += 5) // 0 to 45
 {
 Serial.print(degree); // Display degree
 Serial.print(«\t»); // Tab
 rad = degree * pi / 180.0; // Convert to radians
 Serial.print(sin(rad)); // Display sine
 Serial.print(«\t»); // Tab
 Serial.print(cos(rad)); // Display cosine
 Serial.print(«\t»); // Tab
 Serial.println(tan(rad)); // Display tangent
 }

 while(1); // Stop the program
}

Figure 2.20: Program: trigs.

Figure 2.21 shows the output from the program.

Figure 2.21: Output from the program.

2.3.8 Example 8: Integer calculator
Write a calculator program. The program should receive two integer numbers from the
keyboard and the operation to be performed. The result of the calculation should be dis-
played on the Serial Monitor. Only the basic four operations (+ – * /) should be used in the
program.

Mastering the Arduino Uno R4 - UK.indd 37Mastering the Arduino Uno R4 - UK.indd 37 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 38

Solution 8
Figure 2.22 shows the program listing (Program: calc). Two numbers are read from the
keyboard and stored in variables N1 and N2. In this program, function GetIntNumber()
is used to read an integer number from the keyboard. Built-in function intParse() could
also be used but the problem with intParse() function is that it returns 0 the second time
it is called because of the carriage return and line feed characters entered after the first call.
Here, character array ibuffer reads data from the keyboard, converts them into asci by
calling built-in function atoi() and then returns the integer number to the calling program.
Then, the required operation is read by calling function read() and is stored in variable
oper. A switch block is used to determine the type of operation to be performed. For
example, if oper is equal to '+' then numbers N1 and N2 are added together. The result
of the operation is stored in variable result which is displayed at the end of the program.

//--
// CALCULATOR
// ==========
//
// This is a calculator program that can perform four functions: + - / *
//
// Author: Dogan Ibrahim
// File : calc
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

//
// Function to read an integer number
//
int GetIntNumber()
{
 char ibuffer[16];
 int N;
 while(Serial.available() <= 0);
 Serial.readBytes(ibuffer, sizeof(ibuffer));
 N = atoi(ibuffer);
 return N;
}

void loop()
{
 int N1, N2;
 char oper;

Mastering the Arduino Uno R4 - UK.indd 38Mastering the Arduino Uno R4 - UK.indd 38 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 39

 int result;

 Serial.print("Enter the first number: "); // Prompt for first number
 N1 = GetIntNumber(); // Get first number
 Serial.println(N1); // Display first number

 Serial.print("Enter the second number: "); // Prompt for second number
 N2 = GetIntNumber(); // Get second number
 Serial.println(N2); // Display second number

 Serial.print("Enter the operation (+ - * /): "); // Prompt for operation
 while(Serial.available() <= 0);
 oper = Serial.read(); // Get operation
 Serial.print(oper); // Display operation

 switch(oper)
 {
 case '+': // Is it +
 result = N1 + N2; // Add
 break;
 case '-': // Is it -
 result = N1 - N2; // Subtract
 break;
 case '*': // Is it *
 result = N1 * N2; // Multiply
 break;
 case '/': // IS it /
 result = N1 / N2; // Divide
 break;
 }

 Serial.print("\nResult = "); // Heading
 Serial.println(result); // Display result

 while(1); // Stop the program
}

Figure 2.22: Program: calc.

Figure 2.23 shows an example output from the program where numbers 23 and 3 are mul-
tiplied to give the result 69.

Mastering the Arduino Uno R4 - UK.indd 39Mastering the Arduino Uno R4 - UK.indd 39 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 40

Figure 2.23: Example output from the program.

2.3.9 Example 9: Dice
Write a program to display two random dice numbers between 1 and 6 every time the Send
button in Serial Monitor is clicked.

Solution 9
Figure 2.24 shows the program listing (Program: dice). Inside the setup() function, the
random number generator seed is initialized with the noise present on analog channel 0.
This is necessary so that every time the program is started different set of random numbers
are generated (other methods could also be used to initialize the seed). Inside the program
loop, two random numbers are generated between 1 and 6 whenever the button of the
Serial Monitor is clicked. Clicking this button just sends carriage return and line feed to the
program, which are captured by function readBytes(). The two random numbers are then
generated and displayed on the Serial Monitor. The built-in function random(min, max)
generates a random integer number between min and max-1. Notice that the program
runs continuously (i.e., it is not stopped at the end as was the case with earlier examples).

//--
// DICE PROGRAM
// =============
//
// This is a dice program that displays two random numbers between 1 and 6
//
// Author: Dogan Ibrahim
// File : dice
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
 randomSeed(analogRead(0)); // Random noise to get different seed
}

void loop()
{
 int Dice1, Dice2;
 char ibuffer[16];

Mastering the Arduino Uno R4 - UK.indd 40Mastering the Arduino Uno R4 - UK.indd 40 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 41

 while(Serial.available() > 0)
 {
 Serial.readBytes(ibuffer, sizeof(ibuffer));
 Dice1 = random(1, 7); // First number
 Dice2 = random(1, 7); // Second number
 Serial.print("\nDice1 = "); // Display heading
 Serial.println(Dice1); // Display first number
 Serial.print("Dice2 = "); // Display heading
 Serial.println(Dice2); // Display second number
 }
}

Figure 2.24: Program: dice.

Figure 2.25 shows the output from the program.

Figure 2.25: Example output from the program.

2.3.10 Example 10: Floating point calculator
This program is similar to the one given in Example 8. Here you want to write a program to
operate on integer numbers as well as on floating point numbers.

Solution 10
The program listing is given in Figure 2.26 (Program: calc2). The program is very similar
to the one given in Figure 2.22, but here the integer declarations are changed to float,
function atoi() is changed to atof() and function name is changed to GetANumber().

//--
// CALCULATOR
// ==========
//
// This is a calculator program that can perform four functions: + - / *
//
// This is the floating point version of the program
//
// Author: Dogan Ibrahim
// File : calc2
// Date : June, 2023
//--
void setup()
{

Mastering the Arduino Uno R4 - UK.indd 41Mastering the Arduino Uno R4 - UK.indd 41 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 42

 Serial.begin(9600);
 delay(5000);
}

//
// Function to read a number
//
float GetANumber()
{
 char ibuffer[16];
 float N;
 while(Serial.available() <= 0);
 Serial.readBytes(ibuffer, sizeof(ibuffer));
 N = atof(ibuffer);
 return N;
}

void loop()
{
 float N1, N2, result;
 char oper;

 Serial.print("Enter the first number: "); // Prompt for first number
 N1 = GetANumber(); // Get first number
 Serial.println(N1); // Display first number

 Serial.print("Enter the second number: "); // Prompt for second number
 N2 = GetANumber(); // Get second number
 Serial.println(N2); // Display second number

 Serial.print("Enter the operation (+ - * /): "); // Prompt for operation
 while(Serial.available() <= 0);
 oper = Serial.read(); // Get operation
 Serial.print(oper); // Display operation

 switch(oper)
 {
 case '+': // Is it +
 result = N1 + N2; // Add
 break;
 case '-': // Is it -
 result = N1 - N2; // Subtract
 break;
 case '*': // Is it *
 result = N1 * N2; // Multiply
 break;

Mastering the Arduino Uno R4 - UK.indd 42Mastering the Arduino Uno R4 - UK.indd 42 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 43

 case '/': // IS it /
 result = N1 / N2; // Divide
 break;
 }

 Serial.print("\nResult = "); // Heading
 Serial.println(result); // Display result

 while(1); // Stop the program
}

Figure 2.26: Program: calc2.

Figure 2.27 shows an example output from the program where numbers 1.25 and 13.50
are added to give the result 14.75.

Figure 2.27: Example output from the program.

2.3.11 Example 11: Binary, octal, hexadecimal
Write a program to read a decimal integer number from the keyboard. Convert this number
into binary, octal, and hexadecimal and display the results.

Solution 11
Figure 2.28 shows the program listing (Program: binhexoct). A decimal integer number is
read from the keyboard and is stored in variable N. This number is then displayed in binary
(BIN), octal (OCT) and hexadecimal (HEX) on the Serial Monitor.

//--
// BINARY, HEXADECIMAL,OCTAL
// =========================
//
// This program reads an integer number and displays it in binary,hex,octal
//
// Author: Dogan Ibrahim
// File : binhexoct
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);

Mastering the Arduino Uno R4 - UK.indd 43Mastering the Arduino Uno R4 - UK.indd 43 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 44

 delay(5000);
}

void loop()
{
 int N;

 Serial.print("Enter the number: "); // Prompt for a number
 while(Serial.available() <= 0);
 N = Serial.parseInt(); // Get the number
 Serial.println(N);

 Serial.print("In binary: "); // Display "In binary: "
 Serial.println(N, BIN); // Display number in binary
 Serial.print("In octal: "); // Display "In octal: "
 Serial.println(N, OCT); // Display number in Octal
 Serial.print("In hexadecimal: "); // Display "In hexadecimal: ")
 Serial.println(N, HEX); // Display number in hex

 while(1); // Stop the program
}

Figure 2.28: Program: binhexoct.

Figure 2.29 shows an example where the decimal number 25 is displayed in binary, octal,
and hexadecimal.

Figure 2.29: Example output.

2.3.12 Example 12: String functions
Strings are very important in all programming languages. In C, strings are created either
by using NULL terminated character arrays or by using the keyword String. There are dif-
ferent functions for either type of string. In this section, you will create various strings and
show how to use some of the important string functions.

Solution 12
Figure 2.30 shows the program listing (Program: strfuncs). In this program, strings are
created as character arrays and also using the String keyword. Example output in Figure
2.31 shows the results of the string manipulations.

Mastering the Arduino Uno R4 - UK.indd 44Mastering the Arduino Uno R4 - UK.indd 44 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 45

//--
// STRING FUNCTIONS
// ================
//
// This program shows how to use various string functions. Both character
// array type and String type strings are used in examples
//
// Author: Dogan Ibrahim
// File : strfuncs
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 char mystr[] = "This is a test string"; // create a char array
 char another[80]; // Blank char array
 int length;

 // Display the string
 Serial.println(mystr);

 // Display the length of the string (excludes null terminator)
 length = strlen(mystr);
 Serial.print("String length is: ");
 Serial.println(length);

 // Display the length of the string including null terminator
 length = sizeof(mystr);
 Serial.print("Size of the string: ");
 Serial.println(length);

 // Append a string
 strcat(another, " Another string");
 Serial.println(another);

 // Copy a string
 strcpy(another, mystr);
 Serial.println(another);

 // Use the String creation keyword
 String test = "yet another string declaration";

Mastering the Arduino Uno R4 - UK.indd 45Mastering the Arduino Uno R4 - UK.indd 45 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 46

 // Upper case
 test.toUpperCase();
 Serial.println(test);

 // Display length
 Serial.println(test.length());

 // Add strings
 test = test + " adding";
 Serial.println(test);

 // Position of first character a
 int aposition = test.indexOf('A');
 Serial.println(aposition);

 // Change first character A to X
 test.setCharAt(aposition, 'X');
 Serial.println(test);

 // Replace S with Q
 test.replace('A', 'Q');
 Serial.println(test);

 while(1); // Stop the program
}

Figure 2.30: Program: strfuncs.

Figure 2.31: Example output.

2.3.13 Example 13: Initializing an array
Write a program to initialize a one-dimensional array with the following values, and then
display the values on the Serial Monitor:

	 2, 4, 5, 8, 10, 25, 100, 280, 34, 22

Mastering the Arduino Uno R4 - UK.indd 46Mastering the Arduino Uno R4 - UK.indd 46 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 47

Solution 13
The program listing is shown in Figure 2.32 (Program: arrayinit). Array MyArray is initial-
ized inside at the beginning of the program. The elements of the array are then displayed
inside the loop() function.

//--
// INITIALIZE AN ARRAY
// ===================
//
// This program initializes a one dimensioal array and displays its contents
//
// Author: Dogan Ibrahim
// File : arrayinit
// Date : June, 2023
//--
int MyArray[10] = {2, 4, 5, 8, 10, 25, 100, 280, 34, 22};

void setup()
{
 Serial.begin(9600);
 delay(5000);

}

void loop()
{
 for (int j = 0; j < 10; j++)
 {
 Serial.print(j);
 Serial.print("\t");
 Serial.println(MyArray[j]);
 }

 while(1); // Stop the program
}

Figure 2.32: Program: arrayinit.

Figure 2.33 shows the output from the program.

Mastering the Arduino Uno R4 - UK.indd 47Mastering the Arduino Uno R4 - UK.indd 47 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 48

Figure 2.33: Output from the program.

2.3.14 Example 14: Character functions
In this example, you will look at the various character functions.

Solution 14
The program listing is shown in Figure 2.34 (Program: chfuncs). These character functions
test the type of the given character.

//--
// CHARACTER FUNCTIONS
// ===================
//
// This program shows how to use the character functions in C programs
//
// Author: Dogan Ibrahim
// File : chfuncs
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 if(isdigit('5'))
 Serial.println("5 is digit");
 else
 Serial.println("5 is not a digit");

 if(isalpha('1'))
 Serial.print("1 is alpha");

Mastering the Arduino Uno R4 - UK.indd 48Mastering the Arduino Uno R4 - UK.indd 48 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 49

 else
 Serial.println("1 is not alpha");

 if(isalnum('a'))
 Serial.println("a is alphanumeric");
 else
 Serial.println("A is not alphanumeric");

 if(isxdigit('F'))
 Serial.println("F is hexadecimal");
 else
 Serial.println("F is not hexadecimal");

 if(islower('Z'))
 Serial.println("Z is lower case");
 else
 Serial.println("Z is not lower case");

 if(isupper('r'))
 Serial.println("r is upper case");
 else
 Serial.println("r is not upper case");

 if(isspace(' '))
 Serial.println("space");
 else
 Serial.println("Not a space");

 while(1); // Stop the program
}

Figure 2.34: Program: chfuncs.

Figure 2.35 gives an example output from the program with the most commonly used
character functions.

Figure 2.35: Example output.

Mastering the Arduino Uno R4 - UK.indd 49Mastering the Arduino Uno R4 - UK.indd 49 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 50

2.3.15 Example 15: Solution of a quadratic equation
Write a program to calculate the roots of a quadratic equation of the following form and
display the roots. Enter a, b, and c from the keyboard.

	 ax2 + bx + c = 0

Solution 15
The roots of a quadratic equation are calculated using the following formula:

	 a
acbbx

2
42,1

2 −±−=

Figure 2.36 shows the program listing (Program: quadratic).

//--
// QUADRATIC EQUATION
// ==================
//
// This program calculates and displays the roots of a quadratic equation.
// Both real and complex root are calculated and displayed
//
// Author: Dogan Ibrahim
// File : quadratic
// Date : June, 2023
//--
float a, b, c, root1, root2, rootreal, rootimag;
int real;

void setup()
{
 Serial.begin(9600);
 delay(5000);
}

//
// Function to read a number
//
int GetANumber()
{
 char ibuffer[16];
 float N;
 while(Serial.available() <= 0);
 Serial.readBytes(ibuffer, sizeof(ibuffer));
 N = atof(ibuffer);
 return N;

Mastering the Arduino Uno R4 - UK.indd 50Mastering the Arduino Uno R4 - UK.indd 50 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 51

}

//
// This function calculates and returns the roots
//
void quadratic()
{
 float det = b * b - 4.0 * a * c;
 if(det >= 0.0) // If positive determinant
 {
 real = 1;
 det = sqrt(det); // Claculate square root
 root1 = (-b + det) / (2.0 * a); // Root 1
 root2 = (-b - det) / (2.0 * a); // Root 2
 }
 else // Negative determinant
 {
 real = 0;
 det = -det; // Negate the determinant
 det = sqrt(det); // Calculate square toot
 rootreal = -b / (2.0 * a); // Real part of root
 rootimag = det / (2.0 * a); // Imaginary part of root
 }
}

void loop()
{
 Serial.print("Enter a: "); // Enter a
 a = GetANumber(); // Read a
 Serial.println(a); // Display a

 Serial.print("Enter b: "); // Enter b
 b = GetANumber(); // Read b
 Serial.println(b); // Display b

 Serial.print("Enter c: "); // Enter c
 c = GetANumber(); // Read c
 Serial.println(c); // Display c

 quadratic(); // Calculate roots
 if(real == 1) // If real roots
 {
 Serial.print("Root1 = ");
 Serial.println(root1, 4); // Real root 1

 Serial.print("Root2 = ");

Mastering the Arduino Uno R4 - UK.indd 51Mastering the Arduino Uno R4 - UK.indd 51 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 52

 Serial.println(root2, 4); // Real root 2
 }
 else // If complex roots
 {
 Serial.print("Root1 = ");
 Serial.print(rootreal, 4); // Real root 1
 Serial.print("+j");
 Serial.println(rootimag, 4); // imaginary root 1

 Serial.print("Root2 = ");
 Serial.print(rootreal, 4); // Real root 2
 Serial.print("-j");
 Serial.println(rootimag, 4); // Imaginary root 2
 }

 while(1); // Stop the program
}

Figure 2.36: Program: quadratic.

An example output is shown in Figure 2.37 for the solution of the quadratic equation:

	 –2x2 +2x + 1 = 0

Figure 2.37: Solution of: –2x2 + 2x + 1 = 0.

Figure 2.38 shows an example with complex roots for the equation:

	 2x2 +2x + 1 = 0

Figure 2.38: Solution of: 2x2 + 2x + 1 = 0.

Mastering the Arduino Uno R4 - UK.indd 52Mastering the Arduino Uno R4 - UK.indd 52 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 53

2.3.16 Example 16: Lucky day of the week
Write a program to generate a random number between 1 and 7 and then use this number
as the lucky day number of the week. Display the day number. Make sure that a new ran-
dom number set is used each time the program is started.

Solution 16
Figure 2.39 shows the program listing (Program: lucky). Inside the setup() function,
a seed number is generated for the random number generator by adding all the floating
values of all the analog channels. This should be more random than using only one analog
channel value.

Inside the program loop, a random number is generated between 0 and 10000 and this is
modified to be between 1 and 7 so that the generated number is more random than using
just the function random (1, 8). Then a switch statement is used and the lucky day is
displayed depending on the generated random number.

//--
// LUCKY DAY OF THE WEEK
// =====================
//
// This program displays your lucky day of the week!
//
// Author: Dogan Ibrahim
// File : lucky
// Date : June, 2023
//--
void setup()
{
 Serial.begin(9600);
 delay(5000);
 int val = 0;
 for(int i = 0; i < 6; i++)
 val = val + analogRead(i); // Sum all analogue inputs
 randomSeed(val); // Seed for random number
}

void loop()
{
 int day;

 day = random(10000) % 7 + 1; // Get a number between 1 and 7

//
// Find the lucky day and display on Serial Monitor
//

Mastering the Arduino Uno R4 - UK.indd 53Mastering the Arduino Uno R4 - UK.indd 53 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 54

 switch(day)
 {
 case 1:
 Serial.println("Your lucky day is MONDAY");
 break;
 case 2:
 Serial.println("Your lucky day is TUESDAY");
 break;
 case 3:
 Serial.println("Your lucky day is WEDNESDAY");
 break;
 case 4:
 Serial.println("Your lucky day is THURSDAY");
 break;
 case 5:
 Serial.println("Your lucky day is FRIDAY");
 break;
 case 6:
 Serial.println("Your lucky day is SATURDAY");
 break;
 case 7:
 Serial.println("Your lucky day is SUNDAY");
 break;
 }

 while(1); 		 // Stop the program
}

Figure 2.39: Program: lucky.

Figure 2.40 shows an example output from the program.

Figure 2.40: Example output.

2.3.17 Example 17: Factorial of a number
Write a program to read an integer positive number from the keyboard and calculate and
display its factorial.

Solution 17
Figure 2.41 shows the program listing (Program: factorial). The number is read from
the keyboard using the function scanf(). The factorial of the number is displayed on the
screen.

Mastering the Arduino Uno R4 - UK.indd 54Mastering the Arduino Uno R4 - UK.indd 54 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 55

//--
// FACTORIAL OF A NUMBER
// =====================
//
// This program calculates and displays the factorial of a number
//
// Author: Dogan Ibrahim
// File : factorial
// Date : June, 2023
//--
#include <stdio.h>

void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 int number, i;
 unsigned long long fact = 1;

 Serial.print("Enter an integer positive number: ");
 while(Serial.available() <= 0);
 number = Serial.parseInt();
 Serial.println(number);

 //
 // Error message if the entered number is negative
 //
 if (number < 0)
 Serial.print("You must enter a positive number!");
 else
 {
 for (i = 1; i <= number; ++i)
 {
 fact = fact * i;
 }
 Serial.print("Factorial of ");
 Serial.print(number);
 Serial.print(" is ");
 Serial.println(fact);
 }
 while(1);

Mastering the Arduino Uno R4 - UK.indd 55Mastering the Arduino Uno R4 - UK.indd 55 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 56

}

Figure 2.41: Program: factorial.

Figure 2.42 shows an example output from the program.

Figure 2.42: Example output.

2.3.18 Example 18: Add two square matrices
Write a program to add two given square matrices.

Solution 18
Figure 2.43 shows the program listing (Program: AddMatrices). The matrices are defined
in the setup() function. Function ADDABTOC() adds two matrices A and B and stores the
result in matrix C which is displayed on the screen.

//--
// ADD TWO SQUARE MATRICES
// =======================
//
// This program adds two square matrices A and B and stores the result in
// MAtrix C which is then displayed on the Serial Monitor
//
// Author: Dogan Ibrahim
// File : AddMatrices
// Date : June, 2023
//--
int i, j, N = 4;
int C[4][4];

int A[4][4] =
 {
	 {1, 10, 11, 13},
 {2, 20, 3, 2},
 {13, 12, 2, 4},
 {20, 2, 1, 0}
 };

int B[4][4] =
 {
	 {12, 12, 4, 0},
 {1, 22, 5, 1},
 {0, 3, 12, 4},
 {-2, 2, 0, 1}

Mastering the Arduino Uno R4 - UK.indd 56Mastering the Arduino Uno R4 - UK.indd 56 13-09-2023 11:1313-09-2023 11:13

Chapter 2 ● Arduino Uno R4 Program Development

● 57

 };

//
// Add two square matrices A and B and store in C
//
void ADDABTOC(int A[][4], int B[][4], int C[][4])
{
 int i, j;
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 C[i][j] = A[i][j] + B[i][j];
}

//
// Displays a matrix in Serial Monitor
//
void DisplayMatrix(int X[][4])
{
 int i, j;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++)
 {
 Serial.print(X[i][j]);
 Serial.print(" ");
 }
 Serial.println("");
 }
}

void setup()
{
 Serial.begin(9600);
 delay(5000);
}

void loop()
{
 Serial.println("Matrix A is: ");
 DisplayMatrix(A);
 Serial.println("");

 Serial.println("Matrix B is: ");
 DisplayMatrix(B);
 Serial.println("");

Mastering the Arduino Uno R4 - UK.indd 57Mastering the Arduino Uno R4 - UK.indd 57 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 58

 ADDABTOC(A, B, C);

 Serial.println("Matrix C is: ");
 DisplayMatrix(C);

 while(1);
}

Figure 2.43: Program: AddMatrices.

Figure 2.44 shows an example output from the program.

Figure 2.44: Example output.

Mastering the Arduino Uno R4 - UK.indd 58Mastering the Arduino Uno R4 - UK.indd 58 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 59

Chapter 3 ● Hardware Projects with LEDs

3.1 Overview
In the last chapter, you have learned how to develop software-only projects using the
Arduino IDE with your development board. One of the reasons for using the development
board is to make hardware-based projects. The optional Arduino Experimenting Kit from
Elektor includes many components. In this chapter, you will be developing various projects
using the LEDs supplied with the kit. In later chapters and sections, you will be using some
of the other components supplied with the kit.

3.2 Project 1: Blinking LED – using the on-board LED
Description: In this project, you will be blinking the on-board LED every second. The aim
of this project is to learn how to use the I/O ports of the development board.

Circuit diagram: The on-board LED is connected to port pin 13 of the Arduino Uno R4
board in current sourcing mode through a current-limiting resistor. This means that the LED
is ON when logic 1 is applied to its pin.

Program listing: Figure 3.1 shows the program listing (Program: LEDonboard). At the
beginning of the program, ON and OFF are defined as HIGH and LOW respectively and LED
is assigned to port 13. Inside the setup() function, the LED is configured as an output. The
remainder of the program runs in function loop(). Here, the LED is turned ON and OFF with
1-second delay between each output.

//--
// BLINKING THE ONBOARD LED
// ========================
//
// This program blinks the onboard LED at port 13 every second
//
// Author: Dogan Ibrahim
// File : LEDonboard
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 13; // LED at port 13

void setup()
{
 pinMode(LED, OUTPUT); // Configure LED as output
}

void loop()
{
 digitalWrite(LED, ON); // LED ON

Mastering the Arduino Uno R4 - UK.indd 59Mastering the Arduino Uno R4 - UK.indd 59 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 60

 delay(1000); // 1 second delay
 digitalWrite(LED, OFF); // LED OFF
 delay(1000); // 1 second delay
}

Figure 3.1: Program: LEDonboard.

Compile the program and then upload it to the development board. You should see the on-
board LED blinking at one-second intervals.

Function pinMode() has two arguments: the port number and the mode. The mode can
be: INPUT, OUTPUT, or INPUT_PULLUP.

Function digitalWrite() has two arguments: port number and value. The value can be
HIGH (logic 1) or LOW (logic 0). Note that the analog inputs can also be used as digital pins,
referred to as A0, A1, A2 etc.

Function digitalRead() has one argument only which is the port number. This function
reads digital data (HIGH or LOW) from the specified port. The analog input pins can be used
as digital pins, referred to as A0, A1, A2, etc.

3.3 Project 2: Blinking LED – using an external LED
Description: In this project, you will be connecting an external LED to the development
board and blink this LED every second. The aim of this project is to show how an external
LED can be connected to the development board.

Block diagram: Figure 3.2 shows the block diagram of the project.

Figure 3.2: Block diagram of the project.

Circuit diagram: LEDs can be connected to the development board as either in cur-
rent-sourcing mode or current-sinking mode. In current-sourcing mode (Figure 3.3), one
pin of the LED is connected to the port through a current-limiting resistor and the other pin
is connected to supply ground. In this mode, the LED is ON when logic 1 is applied to it.

Mastering the Arduino Uno R4 - UK.indd 60Mastering the Arduino Uno R4 - UK.indd 60 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 61

In current-sinking mode (Figure 3.4), one pin of the LED is connected to +V power supply
and the other pin to the port through a current-limiting resistor. In this mode, the LED is
ON when logic 0 is applied to it.

Figure 3.3: Current-sourcing mode.

Figure 3.4: Current-sinking mode.

The value of the current-limiting resistor can be calculated as follows: assuming the current
through the LED is about 3 mA and the voltage drop across the LED is about 2 V, then

	 R = (5 V – 2 V) / 3 mA = 1 kΩ. You can use a resistor of around 1 kΩ.

In this project, the LED is connected in current-sourcing mode as shown in Figure 3.5.

Mastering the Arduino Uno R4 - UK.indd 61Mastering the Arduino Uno R4 - UK.indd 61 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 62

Figure 3.5: Connecting the LED in current-sourcing mode.

Construction: The circuit is constructed on a breadboard and connections are made using
jumper wires. Figure 3.6 shows the Fritzing diagram of the circuit. Note: The pin layout of
the Arduino Uno R3 is the same as the board layout of Uno R4.

Figure 3.6: Fritzing diagram of the circuit.

Program listing: Figure 3.7 shows the program listing (Program: LEDext). The program
listing is basically the same as the one given in Figure 3.1, but the LED port is changed from
13 to 2.

//--
// BLINKING AN EXTERNAL LED
// ========================
//
// This program blinks the LED connected to port 2 of the board
//
// Author: Dogan Ibrahim
// File : LEDext

Mastering the Arduino Uno R4 - UK.indd 62Mastering the Arduino Uno R4 - UK.indd 62 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 63

// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 2; // LED at port 2

void setup()
{
 pinMode(LED, OUTPUT); // Configure LED as output
}

void loop()
{
 digitalWrite(LED, ON); // LED ON
 delay(1000); // 1 second delay
 digitalWrite(LED, OFF); // LED OFF
 delay(1000); // 1 second delay
}

Figure 3.7: Program: LEDext.

3.4 Project 3: LED flashing SOS
Description: In this project, an external LED is connected to the development board as in
the previous project. The LED blinks in the form of SOS signal (ON ON ON OFF OFF OFF ON
ON ON, or in Morse terms: …---…) with a small delay between each output.

The block diagram, circuit diagram, and the construction of this project are shown in Figure
3.2, Figure 3.5 and Figure 3.6, respectively.

Program listing: Figure 3.8 shows the program listing (Program: SOS). The time delay
between each dit is set to 200 ms, and the time delay between each dah is set to 600 ms.

//--
// LED FLASHING SOS
// ================
//
// This program blinks the LED connected to port 2 of the board
//
// Author: Dogan Ibrahim
// File : SOS
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 2; // LED at port 2

Mastering the Arduino Uno R4 - UK.indd 63Mastering the Arduino Uno R4 - UK.indd 63 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 64

void setup()
{
 pinMode(LED, OUTPUT); // Configure LED as output
}

void loop()
{
 for(int i=0; i < 3; i++) // Send S
 {
 digitalWrite(LED, ON);
 delay(200);
 digitalWrite(LED, OFF);
 delay(200);
 }
 delay(500);

 for(int i=0; i < 3; i++) // Send O
 {
 digitalWrite(LED, ON);
 delay(600);
 digitalWrite(LED, OFF);
 delay(600);
 }
 delay(500);

 for(int i=0; i < 3; i++) // Send S
 {
 digitalWrite(LED, ON);
 delay(200);
 digitalWrite(LED, OFF);
 delay(200);
 }

 delay(2000);
}

Figure 3.8: Program: SOS.

3.5 Project 4: Alternately blinking LEDs
Description: In this project, two LEDs are connected to the development board. The LEDs
blink alternately every 500 ms. The aim of this project is to show how multiple LEDs can be
connected to the development board.

Mastering the Arduino Uno R4 - UK.indd 64Mastering the Arduino Uno R4 - UK.indd 64 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 65

Block diagram: Figure 3.9 shows the block diagram of the project.

Figure 3.9: Block diagram of the project.

Circuit diagram: In this project, the LEDs are connected in current-sourcing mode as
shown in Figure 3.10. The two LEDs are connected to ports 2 and 5 of the development
board (you could use any other ports if you wish).

Figure 3.10: Connecting the LEDs in current-sourcing mode.

Construction: The circuit is constructed on a breadboard and connections are made us-
ing jumper wires as in the previous project. Figure 3.11 shows the Fritzing diagram of the
circuit.

Mastering the Arduino Uno R4 - UK.indd 65Mastering the Arduino Uno R4 - UK.indd 65 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 66

Figure 3.11: Fritzing diagram of the circuit.

Figure 3.12 shows the circuit built on a breadboard.

Program listing: Figure 3.13 shows the program listing (Program: LEDalternate). The
LEDs are assigned to ports 2 and 5 and are configured as outputs. Inside the main program
loop, the LEDs are turned ON and OFF alternately with 500 ms between each output.

//--
// BLINKING ALTERNATE LEDs
// =======================
//
// In this program 2 LEDs are connected and they blink alternately
//

Mastering the Arduino Uno R4 - UK.indd 66Mastering the Arduino Uno R4 - UK.indd 66 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 67

// Author: Dogan Ibrahim
// File : LEDalternate
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED1 = 2; // LED1 at port 2
int LED2 = 5; // LED2 at port 5

void setup()
{
 pinMode(LED1, OUTPUT); // Configure LED1 as output
 pinMode(LED2, OUTPUT); // COnfigure LED2 as output
}

void loop()
{
 digitalWrite(LED1, ON); // LED1 ON
 digitalWrite(LED2, OFF); // LED2 OFF
 delay(500); // 500ms delay
 digitalWrite(LED1, OFF); // LED1 OFF
 digitalWrite(LED2, ON); // LED2 ON
 delay(500); // 500ms delay
}

Figure 3.13: Program: LEDalternate.

3.6 Project 5: Chaser-LEDs
Description: In this project, 8 LEDs are connected to the development board. The LEDs
"chase" each other as shown in Figure 3.14, with a 500-ms delay between each output.

Figure 3.14: Chasing LEDs.

Mastering the Arduino Uno R4 - UK.indd 67Mastering the Arduino Uno R4 - UK.indd 67 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 68

Block diagram: Figure 3.15 shows the block diagram of the project.

Figure 3.15: Block diagram of the project.

Circuit diagram: Figure 3.16 shows the circuit diagram Ports 2, 3, 4, 5, 6, 7, 8, 9 are
connected to LEDs through current-limiting resistors.

Figure 3.16: Circuit diagram of the project.

Construction: The circuit is constructed on a breadboard and connections are made us-
ing jumper wires as in the previous project. Figure 3.17 shows the Fritzing diagram of the
circuit.

Mastering the Arduino Uno R4 - UK.indd 68Mastering the Arduino Uno R4 - UK.indd 68 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 69

Figure 3.17: Fritzing diagram of the circuit.

Program listing: Figure 3.18 shows the program listing (Program: LEDchase). The LEDs
are assigned to ports 2 to 9 and are configured as outputs. Inside the main program loop,
the LEDs are turned ON and OFF to give the effect of chasing each other as shown in Figure
3.14.

//--
// CHASING 8 LEDs
// ==============
//
// In this program 8 LEDs are connected and they chase each other
//
// Author: Dogan Ibrahim
// File : LEDchase
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {2, 3, 4, 5, 6, 7, 8, 9}; // LEDs at ports 2 to 9

void setup()
{
 for(int i = 0; i < 8; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure LEDs as outputs
 digitalWrite(LED[i], OFF); // LED OFF at beginning

Mastering the Arduino Uno R4 - UK.indd 69Mastering the Arduino Uno R4 - UK.indd 69 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 70

 }
}

void loop()
{
 for(int i = 0; i < 8; i++)
 {
 digitalWrite(LED[i], ON); // LED[i[ON
 delay(500); // 500 ms delay
 digitalWrite(LED[i], OFF); // LED[i] OFF
 }
}

Figure 3.18: Program: LEDchase.

3.7 Project 6: Chasing LEDs 2
Description: In this project, 8 LEDs are connected to the development board as in the
previous project. The LEDs chase each other as shown in Figure 3.19, with a 500-ms delay
between each output.

Figure 3.19: Chasing LEDs.

The block diagram, circuit diagram, and Fritzing diagram are shown in Figure 3.15, Figure
3.16 and Figure 3.17, respectively.

Program listing: Figure 3.20 shows the program listing (Program: LEDchase2). The
LEDs are assigned to ports 2 to 9 and are configured as outputs as in the previous project.
Inside the main program loop, the LEDs are turned ON one at a time to give the effect of
chasing each other as shown in Figure 3.19. Function ALLOFF() turns OFF all the LEDs.

Mastering the Arduino Uno R4 - UK.indd 70Mastering the Arduino Uno R4 - UK.indd 70 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 71

//--
// CHASING 8 LEDs
// ==============
//
// In this program 8 LEDs are connected and they chase each other
//
// Author: Dogan Ibrahim
// File : LEDchase2
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {2, 3, 4, 5, 6, 7, 8, 9}; // LEDs at ports 2 to 9

void setup()
{
 for(int i = 0; i < 8; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure LEDs as outputs
 }
 ALLOFF(); // All LEDs OFF
}

//
// Turn OFF all LEDs
//

void ALLOFF()
{
 for(int i = 0; i < 8; i++)
 digitalWrite(LED[i], OFF); // LEDs OFF at beginning
}

void loop()
{
 for(int i = 0; i < 8; i++)
 {
 digitalWrite(LED[i], ON); // LED[i[ON
 delay(500); // 500 ms delay
 }
 ALLOFF(); // All LEDs OFF
 delay(500);
}

Figure 3.20: Program: LEDchase2.

Mastering the Arduino Uno R4 - UK.indd 71Mastering the Arduino Uno R4 - UK.indd 71 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 72

3.8 Project 7: Binary counting LEDs
Description: In this project, 8 LEDs are connected to the development board as in the
previous project. As shown in Figure 3.21, the LEDs count up in binary with a 500-ms delay
between each count.

Figure 3.21: Binary counting LEDs.

The block diagram, circuit diagram and the Fritzing diagram are as shown in Figure 3.15,
Figure 3.16 and Figure 3.17, respectively.

Program listing: Figure 3.22 shows the program listing (Program: LEDcount). The LEDs
are assigned to ports 2 to 9 and are configured as outputs in function setup(). Function
ALLOFF() turns OFF all the LEDs. Function Display() groups the LEDs as an 8-bit byte
and turns ON the LED whose binary value is supplied. Argument L is the number of bits in
the group (8 here), and No is the binary value. For example, function Display(2, 8) will
turn the second LED from the LSB side ON and all other LEDs will be OFF. Variable Count
is incremented by one and function Display() is called to turn ON the appropriate LEDs so
that the LEDs count up in binary as shown in Figure 3.21.

//--
// BINARY COUNTING LEDs
// ====================
//
// In this program 8 LEDs are connected and they count up in binary
//
// Author: Dogan Ibrahim
// File : LEDcount
// Date : June, 2023
//--
#define ON HIGH // Define ON

Mastering the Arduino Uno R4 - UK.indd 72Mastering the Arduino Uno R4 - UK.indd 72 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 73

#define OFF LOW // Define OFF
int LED[] = {9, 8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 9
int Count = 0;

void setup()
{
 for(int i = 0; i < 8; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure LEDs as outputs
 }
 ALLOFF(); // All LEDs OFF
}

//
// Turn OFF all LEDs
//
void ALLOFF()
{
 for(int i = 0; i < 8; i++)
 digitalWrite(LED[i], OFF); // LEDs OFF at beginning
}

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

Mastering the Arduino Uno R4 - UK.indd 73Mastering the Arduino Uno R4 - UK.indd 73 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 74

void loop()
{
 Count++; // Increment Count
 if(Count > 255) Count = 0; // If Count>255, set to 0
 Display(Count, 8); // Display result
 delay(500); // 500 ms delay
}

Figure 3.22: Program: LEDcount.

3.9 Project 8: Random flashing LEDs — Christmas lights
Description: In this project, 8 LEDs are connected to the development board as in the
previous project. The lights flash randomly as if they are Christmas lights (more LEDs can
easily be added to the project if desired).

The block diagram, circuit diagram, and Fritzing diagram are shown in Figure 3.15, Figure
3.16 and Figure 3.17, respectively.

Program listing: Figure 3.23 shows the program listing (Program: LEDrandom). The
LEDs are assigned to ports 2 to 9 and are configured as outputs in function setup() as in
the previous project. A random number is generated between 1 and 255 and this number
is used in function Display() to turn the LEDs ON/OFF.

//--
// RANDOM FLASHING 8 LEDs
// ======================
//
// In this program 8 LEDs are connected and they flash randomly as if
// they are Christmas lights
//
// Author: Dogan Ibrahim
// File : LEDrandom
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {9, 8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 9

void setup()
{
 for(int i = 0; i < 8; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure LEDs as outputs
 }
}

Mastering the Arduino Uno R4 - UK.indd 74Mastering the Arduino Uno R4 - UK.indd 74 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 75

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

void loop()
{
 int rnd = random(1, 256); // GEenarte random number
 Display(rnd, 8); // Display the number
 delay(100); // 500 ms delay
}

Figure 3.23: Program: LEDrandom.

3.10 Project 9: Button controlled LED
Description: In this project, a button and an LED are connected to the development
board. The project is very simple: pressing the button turns ON the LED. The aim of this
project is to show how a button can be connected and how data can be input.

Block diagram: Figure 3.24 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 75Mastering the Arduino Uno R4 - UK.indd 75 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 76

Figure 3.24: Block diagram of the project.

Circuit diagram: A button can be connected in one of two ways. In Figure 3.25, the out-
put state of the button is logic 0 and goes to logic 1 when the button is pressed. In Figure
3.26, the output state of the button is at logic 1 and goes to 0 when the button is pressed.

The circuit diagram of the project is shown in Figure 3.27. The LED is connected to port 2,
and the button to port 5. In this project, the output state of the button is at logic 0 and goes
to logic 1 when the button is pressed.

Figure 3.25: Connecting a button.

Figure 3.26: Another way of connecting a button.

Mastering the Arduino Uno R4 - UK.indd 76Mastering the Arduino Uno R4 - UK.indd 76 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 77

Figure 3.27: Circuit diagram of the project.

Construction: The circuit is constructed on a breadboard and connections made using
jumper wires as in the previous projects. Figure 3.28 shows the Fritzing diagram of the
circuit.

Figure 3.28: Fritzing diagram of the circuit.

Program listing: Figure 3.29 shows the program listing (Program: Button). The LED and
the button are assigned to ports 2 and 5, respectively. The LED is configured as a digital
output, while the button is configured as a digital input. The LED is turned OFF at the be-
ginning of the project. Inside the main program loop, the state of the button is checked.
Pressing the button turns ON the LED, and releasing the button turns OFF the LED.

Mastering the Arduino Uno R4 - UK.indd 77Mastering the Arduino Uno R4 - UK.indd 77 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 78

//---
// BUTTON AND LED
// ==============
//
// In this program an LED and a button are connected. Pressing the button
// turns ON the LED
//
// Author: Dogan Ibrahim
// File : Button
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 2; // LED at port 2
int Button = 5; // Button at port 5

void setup()
{
 pinMode(LED, OUTPUT); // Configure LED as output
 digitalWrite(LED, OFF); // LED OFF at beginning
 pinMode(Button, INPUT); // COnfigure Button as input
}

void loop()
{
 if(digitalRead(Button) == 1) // If Button is pressed
 digitalWrite(LED, ON); // LED ON
 else // Otherwise
 digitalWrite(LED, OFF); // LED OFF
}

Figure 3.29: Program: Button.

Modified program
You can pull up the input pin to +V in the software so that you don't have to connect the
button to +V. The modified circuit diagram is simpler and is shown in Figure 3.30.

Mastering the Arduino Uno R4 - UK.indd 78Mastering the Arduino Uno R4 - UK.indd 78 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 79

Figure 3.30: Modified circuit diagram.

The modified software (Program: Button2) which pulls up the input pin is shown in Figure
3.31. Here, the button pin is normally at logic 1 and goes to logic 0 when the button is
pressed.

//--
// BUTTON AND LED
// ==============
//
// In this program an LED and a button are connected. Pressing the button
// turns ON the LED
//
// Modified software that uses software pull-up of input pin
//
// Author: Dogan Ibrahim
// File : Button2
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 2; // LED at port 2
int Button = 5; // Button at port 5

void setup()
{
 pinMode(LED, OUTPUT); // Configure LED as output
 digitalWrite(LED, OFF); // LED OFF at beginning
 pinMode(Button, INPUT_PULLUP); // Pull-up button pin
}

void loop()
{
 if(digitalRead(Button) == 0) // If Button is pressed

Mastering the Arduino Uno R4 - UK.indd 79Mastering the Arduino Uno R4 - UK.indd 79 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 80

 digitalWrite(LED, ON); // LED ON
 else // Otherwise
 digitalWrite(LED, OFF); // LED OFF
}

Figure 3.31: Program: Button2.

3.11 Project 10: Controlling the LED flashing rate — external interrupts
Description: In this project, two buttons named FAST and SLOW and an LED are used.
Pressing FAST will increase the LED flashing rate. Similarly, pressing SLOW will decrease
the LED flashing rate. The aim of this project is to show how external interrupts can be used
with the Arduino IDE.

Block diagram: Figure 3.32 shows the block diagram of the project.

Figure 3.32: Block diagram of the project.

Circuit diagram: As shown in Figure 3.33, the LED is connected to port 5. FAST and SLOW
buttons are connected to ports 2 and 3 of the development board. Internal pull-up resistors
of the processor are used in the project so that the state of a button is at logic 1 and goes
to logic 0 when the button is pressed.

Figure 3.33: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 80Mastering the Arduino Uno R4 - UK.indd 80 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 81

Construction: The circuit is constructed on a breadboard and connections made using
jumper wires as in the previous projects. Figure 3.4 shows the Fritzing diagram of the
circuit.

Figure 3.34: Fritzing diagram of the circuit.

Program listing: This program uses external interrupts on the two buttons. When the pro-
gram is started the LED flashes with one second delay between each output. Pressing the
button FAST generates an external interrupts where inside the interrupt service routine this
delay is reduced so that the LED flashes faster. Similarly, pressing the button SLOW gener-
ates another interrupt where inside the interrupt service routine the delay is increased so
that the LED flashes slower.

External interrupts are very important in many microcontroller applications. In this project,
because the LED is flashing constantly, you have to use external interrupts to change the
flashing rate. This is because you could not test for the button actions inside the flashing
code.

Maduino Uno (or Arduino Uno) supports external interrupts on its port pins 2 and 3. The
following code must be executed to set up an external interrupt:

	 attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)

where ISR is the name of the interrupt service routine function name, and mode tells how
interrupts will be accepted at the specified pin. Mode can take the following values:

Mastering the Arduino Uno R4 - UK.indd 81Mastering the Arduino Uno R4 - UK.indd 81 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 82

•	LOW: to trigger the interrupt whenever the pin is LOW.
•	CHANGE: to trigger the interrupt whenever the pin changes state.
•	RISING: to trigger the interrupt when the pin goes from LOW to HIGH.
•	FALLING: to trigger the interrupt whenever the pin goes from HIGH to LOW.

Figure 3.35 shows the program listing (Program: LEDcontrol). The LED is at port 5. But-
tons are at ports 2 and 3 where external interrupts can be accepted. LED is configured as
output, and the buttons are configured as inputs with internal pull-up resistors. Pressing a
button changes the button state from High to Low. Therefore, you have to set the interrupt
mode to FALLING. The following two statements are used inside the setup() function to
configure external interrupts on the two buttons:

	 attachInterrupt(digitalPinToInterrupt(2), FAST_CODE, FALLING);
 	 attachInterrupt(digitalPinToInterrupt(3), SLOW_CODE, FALLING);

Where FAST_CODE and SLOW_CODE are the interrupt service routine function names.
The LED flashes every second when the program is started. Pressing the button FAST
generates an external interrupt and the program jumps to function FAST_CODE where
the delay is decremented by 50 ms, thus making the LED flash faster. Similarly, pressing
the button SLOW generates an external interrupt and the program jumps to function
SLOW_CODE where the delay is increased by 50 ms, thus making the LED flash slower.

//--
// CONTROLLING THE LED FLASHING RATE
// =================================
//
// In this program an LED and two buttons named FAST and SLOW are connected.
// Pressing FAST increases flashing rate.Pressing SLOW decreases flashing rate.
//
// The program is based on using external interrupts
//
// Modified software that uses software pull-up of input pin
//
// Author: Dogan Ibrahim
// File : LEDcontrol
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 5; // LED at port5
int FAST = 2; // FAST button at port 2
int SLOW = 3; // SLOW button at port 3
int dely = 1000; // Default delay (1000 ms)

void setup()
{

Mastering the Arduino Uno R4 - UK.indd 82Mastering the Arduino Uno R4 - UK.indd 82 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 83

 pinMode(LED, OUTPUT); // Configure LED as output
 digitalWrite(LED, OFF); // LED OFF at beginning
 pinMode(FAST, INPUT_PULLUP); // Pull-up FAST button pin
 pinMode(SLOW, INPUT_PULLUP); // Pull-up SLOW button pin
 attachInterrupt(digitalPinToInterrupt(2), FAST_CODE, FALLING);
 attachInterrupt(digitalPinToInterrupt(3), SLOW_CODE, FALLING);
}

//
// FAST_CODE interrupt service routine
//
void FAST_CODE()
{
 dely = dely - 50; // Decrement delay
 if(dely < 0)dely = 0;
}

//
// SLOW_CODE interrupt service routine
//
void SLOW_CODE()
{
 dely = dely + 50; // Increment delay
}

void loop()
{
 digitalWrite(LED, ON); // LED ON
 delay(dely); // Delay
 digitalWrite(LED, OFF); // LED OFF
 delay(dely); // Delay
}

Figure 3.35: Program: LEDcontrol.

3.12 Project 11: Reaction timer
Description: In this project, an LED and a button are used. The project measures the
reaction time of the user and displays it on the Serial Monitor in milliseconds. The LED is
turned ON at random times. As soon as the user sees the LED, he/she is expected to press
the button. The time delay between seeing the LED and pressing the button is a measure
of the reaction time, which is displayed by the program.

The block diagram and circuit diagram of the project are in Figure 3.24 and Figure 3.27,
respectively.

Mastering the Arduino Uno R4 - UK.indd 83Mastering the Arduino Uno R4 - UK.indd 83 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 84

Program listing: Figure 3.36 shows the program listing (Program: reaction). Inside the
setup() function, the Serial Monitor is initialized, the LED is configured as output, and the
button is configured as. Inside the main program loop, a random number is generated
between 1 and 20 seconds, and the program is configured to wait for some random time
before turning ON the LED. At this point, the time is read by calling the built-in function
millis() and is stored in variable StartTime. When the button is pressed, the time is read
again and stored in EndTime. The difference between the EndTime and StartTime is the
reaction time of the user.

Compile and upload the program to the processor. Then, start the Serial Monitor and press
the button as soon as the LED is ON.

//--
// REACTION TIME
// =============
//
// This program measures the reaction time of the user and displays it
// on the Serial Monitor in milliseconds.
//
// Author: Dogan Ibrahim
// File : reaction
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED = 2; // LED at port 2
int Button = 5; // Button at port 5

void setup()
{
 Serial.begin(9600);
 pinMode(LED, OUTPUT); // Configure LED as output
 digitalWrite(LED, OFF); // LED OFF at beginning
 pinMode(Button, INPUT_PULLUP); // Pull-up button pin
 delay(2000);
}

void loop()
{
 int rnd = random(1, 21); // Random number 1-20 secs
 delay(rnd); // Random delay
 digitalWrite(LED, ON); // LED ON
 float StartTime = millis(); // Start time
 while(digitalRead(Button) == 1); // Wait for button press
 float EndTime = millis(); // End time

Mastering the Arduino Uno R4 - UK.indd 84Mastering the Arduino Uno R4 - UK.indd 84 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 85

 digitalWrite(LED, OFF); // LED OFF
 float ElapsedTime = EndTime - StartTime; // Elapsed time
 Serial.print("Reaction time (ms) = "); // Heading
 Serial.println(ElapsedTime, 2); // Reaction time

 delay(3000);
}

Figure 3.36: Program: reaction.

Figure 3.37 shows an example output from the program.

Figure 3.37: Example output.

3.13 Project 12: LED color wand
Description: In this project, an RGB LED module is used to generate different colors of
light, just like a color wand. The aim of this project is to show how an RGB LED can be used
in a program to generate different colors of light.

Block diagram:
The block diagram of the project is shown in Figure 3.38.

Figure 3.38: Block diagram of the project.

Circuit Diagram: RGB modules can either be common-cathode or common-anode. The
one supplied with the kit is common-cathode where the common pin is connected to ground
and an LED is turned ON by applying logic 1 to its pin. The module supplied has 4 pins
marked R, G, B, and GND. 120-Ω on-board current-limiting resistors are used in series with
each pin. With 120 Ω, assuming 2 V drop across each LED, the current drawn by each LED
will be about (5 V – 2 V) / 120 Ω or 25 mA, which is well within the I/O specifications (it
is recommended to use higher resistor values if higher currents are to be drawn from the
I/O ports).

Mastering the Arduino Uno R4 - UK.indd 85Mastering the Arduino Uno R4 - UK.indd 85 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 86

The circuit diagram of the project is shown in Figure 3.39. The R, G, and B LED pins are
connected to port pins 2, 3, and 4 of the development board. The common pin of the RGB
module is connected to GND.

Figure 3.39: Circuit diagram of the project.

Program listing: The program listing of the project is very simple and is shown in Figure
3.40 (Program: RGB). At the beginning of the program, the I/O pins where the Red, Green
and Blue pins are connected are defined. Then these port pins are configured as outputs.
The remainder of the program runs in an endless loop where inside this loop random num-
bers are generated between 0 and 1 (notice that when using the random function, the
lower bond is included, but the upper bound is excluded. Because of this the arguments to
this function must be 0, 2) for all three colors and the generated numbers are sent to the
corresponding ports. Thus, for example, if number 1 is generated for the Red port then the
red color is turned ON, and so on.

//--
// LED COLOUR WAND - RGB
// =====================
//
// In this project we use an RGB module to generate random colours, just
// like a magic colour wand
//
// Author: Dogan Ibrahim
// File : RGB
// Date : June, 2023
//--
#define RED 2
#define GREEN 3
#define BLUE 4
int R, G, B;

//

Mastering the Arduino Uno R4 - UK.indd 86Mastering the Arduino Uno R4 - UK.indd 86 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 87

// Set I/O pin 2, 3 and 4 as outputs
//
void setup()
{
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);
 randomSeed(10);
}

//
// Use the random number generator to generate ON (1) or OFF
// (0) values for the three colours
//
void loop()
{
 R = random(0, 2);
 G = random(0, 2);
 B = random(0, 2);

 digitalWrite(RED, R);
 digitalWrite(GREEN, G);
 digitalWrite(BLUE, B);
 delay(500);
}

Figure 3.40: Program: RGB.

Suggestion: In the program in Figure 3.40, the delay time is set to 500 ms. Try changing
this time (e.g., make it shorter) and see its effects.

3.14 Project 13: RGB fixed colors
Description: In this project, you will generate fixed colors using the RGB module.

The block diagram and circuit diagram of the project are in Figure 3.38 and Figure 3.39,
respectively.

Program listing: Figure 3.41 shows the program listing (Program: RGBfixed). The pro-
gram cycles through many colors, where each color is displayed for 2 seconds. The follow-
ing colors are displayed:

	 RED, GREEN, BLUE, YELLOW, MAGENTA, WHITE, CYAN

//--
// LED COLOUR WAND - RGB
// =====================

Mastering the Arduino Uno R4 - UK.indd 87Mastering the Arduino Uno R4 - UK.indd 87 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 88

//
// In this project we use an RGB module to generate random colours, just
// like a magic colour wand
//
// Author: Dogan Ibrahim
// File : RGBfixed
// Date : June, 2023
//--
#define red 2
#define green 3
#define blue 4

//
// Set I/O pin 2, 3 and 4 as outputs
//
void setup()
{
 pinMode(red, OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(blue, OUTPUT);
}

void loop()
{
 //RED
 digitalWrite(red, HIGH);
 digitalWrite(green,LOW);
 digitalWrite(blue,LOW);
 delay(2000);

//GREEN
 digitalWrite(red,LOW);
 digitalWrite(green,HIGH);
 digitalWrite(blue,LOW);
 delay(2000);

//BLUE
 digitalWrite(red,LOW);
 digitalWrite(green,LOW);
 digitalWrite(blue,HIGH);
 delay(2000);

//YELLOW
 digitalWrite(red,HIGH);
 digitalWrite(green,HIGH);
 digitalWrite(blue,LOW);

Mastering the Arduino Uno R4 - UK.indd 88Mastering the Arduino Uno R4 - UK.indd 88 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 89

 delay(2000);

//MAGENTA
 digitalWrite(red,HIGH);
 digitalWrite(green,LOW);
 digitalWrite(blue,HIGH);
 delay(2000);

//WHITE
 digitalWrite(red,HIGH);
 digitalWrite(green,HIGH);
 digitalWrite(blue,HIGH);
 delay(2000);

//CYAN
 digitalWrite(red,LOW);
 digitalWrite(green,HIGH);
 digitalWrite(blue,HIGH);
 delay(2000);
}

Figure 3.41: Program: RGBfixed.

3.15 Project 14: Traffic lights
Description: In this project, a program is written to control traffic lights at a simple junc-
tion. Red, yellow, and green LEDs are used to simulate the traffic lights. The kit is sup-
plied with red, blue, and green LEDs. In this project, the yellow LEDs are simulat-
ed with the blue LEDs.

It is assumed that traffic flows from the left-hand side of the road (i.e., the steering wheels
of cars are at the right-hand side). In this project, the junction consists of two roads:
NORTH ROAD and EAST ROAD. The traffic lights are located at the junction as shown in
Figure 3.42.

Figure 3.42: Example junction.

Mastering the Arduino Uno R4 - UK.indd 89Mastering the Arduino Uno R4 - UK.indd 89 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 90

The traffic light sequence in the UK is as follows (Figure 3.43). Note that the yellow color
is actually amber color:

ROAD 1		 ROAD 2
RED			 GREEN
RED+YELLOW	 YELLOW
GREEN		 RED
YELLOW		 RED+YELLOW
RED			 GREEN

Figure 3.43: Traffic lights sequence in the UK.

The timings used in this project are shown in Table 3.1, where the green on EAST ROAD is
for 10 seconds, and the green on NORTH road is for 4 seconds. The cycle time of the lights
is 27 seconds, having the following values:

EAST ROAD			 NORTH ROAD
10 s green			 18 s red
12 s red			 2 s red+yellow
2 s red+yellow		 4 s green
3 s yellow			 3 s yellow

Time (seconds) EAST ROAD NORTH ROAD

0 GREEN RED

1 GREEN RED

2 GREEN RED

3 GREEN RED

4 GREEN RED

5 GREEN RED

6 GREEN RED

7 GREEN RED

8 GREEN RED

9 GREEN RED

Mastering the Arduino Uno R4 - UK.indd 90Mastering the Arduino Uno R4 - UK.indd 90 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 91

10 YELLOW RED

11 YELLOW RED

12 YELLOW RED

13 RED RED

14 RED RED + AMBER

15 RED RED + AMBER

16 RED GREEN

17 RED GREEN

18 RED GREEN

19 RED GREEN

20 RED YELLOW

21 RED YELLOW

22 RED YELLOW

23 RED RED

24 RED + AMBER RED

25 RED + AMBER RED

26 GREEN RED

27 GREEN RED

Table 3.1: Timing used in the project.

Block diagram: The block diagram of the project is shown in Figure 3.44, where 6 LEDs
are used, 3 for each road (notice that blue is used to represent "yellow").

Figure 3.44: Block diagram of the project.

Circuit diagram: Figure 3.45 shows how the LEDs are connected to the development
board. NORTH ROAD red, yellow, and green LEDs are connected to port pins 2, 3, and 4,
respectively. EAST ROAD red, yellow, and green LEDs are connected to port pins 5, 6, and
7, respectively.

Mastering the Arduino Uno R4 - UK.indd 91Mastering the Arduino Uno R4 - UK.indd 91 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 92

Figure 3.45 Circuit diagram of the project.

Construction: The project was constructed on a breadboard and jumper wires were used
to connect the LEDs and resistors to the development board. Figure 3.46 shows the Fritzing
component positioning diagram of the project.

Figure 3.46: Fritzing-style diagram of the project.

Program listing: Figure 3.47 shows the program listing (Program: traffic). At the begin-
ning of the program, the LEDs are assigned to output ports and all the LEDs are turned OFF.
Function DelaySeconds() receives integer N as an argument and delays the program by
N seconds. The main program runs in function loop(). Inside this function, the LEDs at
both roads are turned ON and OFF at the times specified by Table 3.1.

Mastering the Arduino Uno R4 - UK.indd 92Mastering the Arduino Uno R4 - UK.indd 92 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 93

//--
// TRAFFIC LIGHTS
// ==============
//
// This is a traffic lights project. A junction with the road names
// NORTH ROAD and EAST ROAD is considered. The traffic flow is assumed
// to be from the left. The program controls the traffic lights at the
// junction with the timings as described in the text
//
// Author: Dogan Ibrahim
// File : traffic
// Date : June, 2023
//--
#define NorthR 2 // NORTH ROAD red
#define NorthY 3 // NORTH ROAD yellow
#define NorthG 4 // NORTH ROAD green
#define EastR 5 // EAST ROAD red
#define EastY 6 // EAST ROAD yellow
#define EastG 7 // EAST ROAD green

#define ON HIGH
#define OFF LOW

//
// Set LEDs as outputs and turn them all OFF at the beginning
//
void setup()
{
 for(int i = 0; i < 6; i++)
 {
 pinMode(2+i, OUTPUT);
 digitalWrite(2+i, OFF);
 }
}

//
// N seconds delay
//
void DelaySeconds(int N)
{
 delay(N * 1000);
}

void loop()
{

Mastering the Arduino Uno R4 - UK.indd 93Mastering the Arduino Uno R4 - UK.indd 93 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 94

 digitalWrite(NorthG, ON); // NORTH ROAD green ON
 digitalWrite(EastR, ON); // EAST ROAD red ON
 DelaySeconds(10); // 10 seconds delay

 digitalWrite(NorthG, OFF); // NORTH ROAD green OFF
 digitalWrite(NorthY, ON); // NORTH ROAD yellow ON
 DelaySeconds(3); // 3 seconds delay

 digitalWrite(NorthY, OFF); // NORTH ROAD yellow OFF
 digitalWrite(NorthR, ON); // NORTH ROAD red ON
 DelaySeconds(1); // 1 second delay

 digitalWrite(EastY, ON); // EAST ROAD red+yellow
 DelaySeconds(2); // 2 seconds delay

 digitalWrite(EastR, OFF); // EAST ROAD red oFF
 digitalWrite(EastY, OFF); // East ROAD yellow OFF
 digitalWrite(EastG, ON); // EAST ROAD green ON
 DelaySeconds(4); // 4 seconds delay

 digitalWrite(EastG, OFF); // EAST ROAD green OFF
 digitalWrite(EastY, ON); // EAST ROAD yellow ON
 DelaySeconds(3); // 3 seconds delay

 digitalWrite(EastY, OFF); // EAST ROAD yellow OFF
 digitalWrite(EastR, ON); // EAST ROAD red ON
 DelaySeconds(1); // 2 seconds delay

 digitalWrite(NorthY, ON); // NOTH ROAD red+yellow ON
 DelaySeconds(2); // 2 seconds delay

 digitalWrite(NorthY, OFF); // NORTHROAD yellow OFF
 digitalWrite(NorthR, OFF); // NORTH ROAD red OFF
}

Figure 3.47: Program: traffic.

3.16 Project 15: Traffic lights with pedestrian crossings
Description: This project is very similar to the previous one but here pedestrian pushbut-
tons and pedestrian red and green LEDs are used at both the NORTH ROAD and the EAST
ROAD. Pressing the pedestrian button stops the traffic on both roads by setting both lights
to red for 15 seconds. Access to the pedestrian crossing is only given at the end of a cycle
when the lights on both roads are red. If the lights aren't red, then the pedestrian must
wait until the cycle is finished and both lights become red. Pressing the pushbutton saves
the state of the button and this state is only checked once, when both lights are red. The

Mastering the Arduino Uno R4 - UK.indd 94Mastering the Arduino Uno R4 - UK.indd 94 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 95

pedestrian green LED turns ON when it is safe to cross the road, otherwise, the red pedes-
trian LED is ON.

The traffic lights and the pedestrian crossing buttons are shown in Figure 3.48. Pedestrian
crossing pushbuttons are used at one side of each road for simplicity. When the red pedes-
trian light is ON the pedestrian must wait and only cross the road when the green light is
ON.

Figure 3.48: Example junction with pedestrian pushbuttons.

Block diagram: The block diagram of the project is shown in Figure 3.49. where 6 LEDs
are used, 3 for each road, 2 pushbuttons are used one for each side of the road, and 2 red
and 2 green pedestrian lights are used.

Figure 3.49: Block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 95Mastering the Arduino Uno R4 - UK.indd 95 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 96

Circuit diagram: The interface between the development board and the LEDs and push-
buttons are as follows. Notice that the pushbutton is assigned to port 2 since external
interrupts can only be accepted from port 2 or 3:

ROAD EQUIPMENT				 PORT NUMBER
NORTH ROAD RED LED				 3
NORTH ROAD YELLOW LED				 4
NORTH ROAD GREEN LED				 5

EAST ROAD RED LED					 6
EAST ROAD YELLOW LED				 7
EAST ROAD GREEN LED				 8

NORTH AND EAST ROAD PEDESTRIAN PUSHBUTTON	 2
NORTH AND EAST ROAD PEDESTRIAN RED LED	 9
NORTH AND EAST ROAD PEDESTRIAN GREEN LED	 10

Figure 3.50 shows the circuit diagram of the project. Notice that the pedestrian LEDs on the
NORTH ROAD and EAST ROAD share the same ports. Also, the pedestrian pushbuttons on
the NORTH ROAD and EAST ROAD share the same ports.

Figure 3.50: Circuit diagram of the project.

Program listing: The program listing is shown in Figure 3.51 (Program: trafficped).
The program is similar to the one shown in Figure 3.47. Here, additionally, the pedestrian
crossing is controlled. At the beginning of the program, all the LEDs and pushbuttons are

Mastering the Arduino Uno R4 - UK.indd 96Mastering the Arduino Uno R4 - UK.indd 96 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 97

assigned to the specified ports. The LEDs are configured as outputs and the pushbutton is
configured as input with internal pull-up resistors. All the signal LEDs are turned OFF, the
red pedestrian LEDs are turned ON, and the green pedestrian LEDs are turned OFF.

The pushbutton is configured as an external interrupt that accepts interrupts on the FALL-
ING edge of the port pin (i.e. when the pushbutton is pressed). On accepting an interrupt,
the program jumps to function PedRequest() which is the external interrupt service rou-
tine. Here, variable PED is set to 1 to indicate that the pushbutton has been pressed and
there is a pedestrian request. The state of variable PED is checked when both roads are in
red. If PED is set to 1 then the red pedestrian LED is turned OFF and the green pedestrian
LED is turned ON to let the pedestrians cross the road. In this project, the pedestrian cycle
is set to 15 seconds. At the end of this time, the red pedestrian LED is turned ON and the
green pedestrian LED is turned OFF to sign the pedestrians not to cross the road.

//--
// TRAFFIC LIGHTS WITH PEDESTRIAN CROSSINGS
// ==
//
// This is a traffic lights project. A junction with the road names
// NORTH ROAD and EAST ROAD is considered. The traffic flow is assumed
// to be from the left. The program controls the traffic lights at the
// junction with the timings as described in the text.
//
// In this version of the program pedestrian crossings are also controlled
//
// Author: Dogan Ibrahim
// File : trafficped
// Date : June, 2023
//--
#define NorthR 3 // NORTH ROAD red
#define NorthY 4 // NORTH ROAD yellow
#define NorthG 5 // NORTH ROAD green
#define EastR 6 // EAST ROAD red
#define EastY 7 // EAST ROAD yellow
#define EastG 8 // EAST ROAD green

#define pedpb 2 // pedestrian pushbutton
#define pedr 9 // pedestrian red LED
#define pedg 10 // pedestrian green LED

#define ON HIGH
#define OFF LOW
int PED = 0; // Pedestrian button statue

//

Mastering the Arduino Uno R4 - UK.indd 97Mastering the Arduino Uno R4 - UK.indd 97 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 98

// Configure the LEDs as outputs and the button as input. ALso,
// configure external interrupts on the pedestrian pushbutton
//
void setup()
{
 for(int i = 0; i < 6; i++)
 {
 pinMode(2+i, OUTPUT); // Configure LEDs as outputs
 digitalWrite(2+i, OFF); // All LEDs except ped LEDs are OFF
 digitalWrite(pedr, ON); // Pedestrian red LED ON
 digitalWrite(pedg, OFF); // Pedestrian green LED OFF

 pinMode(pedpb, INPUT_PULLUP); // pedestrian pushbutton is input

 attachInterrupt(digitalPinToInterrupt(pedpb), PedRequest, FALLING);
 }
}

//
// This is the external interrupt service routine. When the pedestrian pushbutton
// is pressed, the program jumps here to set variable PED to 1 to indicate that
// someone pressed the pushbutton
//
void PedRequest()
{
 PED = 1;
}

//
// N seconds delay
//
void DelaySeconds(int N)
{
 delay(N * 1000);
}

void loop()
{

 digitalWrite(NorthG, ON); // NORTH ROAD green ON
 digitalWrite(EastR, ON); // EAST ROAD red ON
 DelaySeconds(10); // 10 seconds delay

 digitalWrite(NorthG, OFF); // NORTH ROAD green OFF
 digitalWrite(NorthY, ON); // NORTH ROAD yellow ON
 DelaySeconds(3); // 3 seconds delay

Mastering the Arduino Uno R4 - UK.indd 98Mastering the Arduino Uno R4 - UK.indd 98 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 99

 digitalWrite(NorthY, OFF); // NORTH ROAD yellow OFF
 digitalWrite(NorthR, ON); // NORTH ROAD red ON
 //
 // At this point the red LEDs are ON at both side of the road
 // Check for pedestrian request
 //
 if(PED == 1) // If ped pushbutton pressed
 {
 PED = 0; // Reset ped pushbutton
 digitalWrite(pedg, ON); // NORTH ROAD green ped LED ON
 digitalWrite(pedr, OFF); // NORTH ROAD red ped LED OFF
 DelaySeconds(15); // 15 seconds pedestrian time

 digitalWrite(pedg, OFF); // NORTH ROAD green ped LED OFF
 digitalWrite(pedr, ON); // NORTH ROAD red ped LED ON
 }
 DelaySeconds(1); // 1 second delay

 digitalWrite(EastY, ON); // EAST ROAD red+yellow
 DelaySeconds(2); // 2 seconds delay

 digitalWrite(EastR, OFF); // EAST ROAD red oFF
 digitalWrite(EastY, OFF); // East ROAD yellow OFF
 digitalWrite(EastG, ON); // EAST ROAD green ON
 DelaySeconds(4); // 4 seconds delay

 digitalWrite(EastG, OFF); // EAST ROAD green OFF
 digitalWrite(EastY, ON); // EAST ROAD yellow ON
 DelaySeconds(3); // 3 seconds delay

 digitalWrite(EastY, OFF); // EAST ROAD yellow OFF
 digitalWrite(EastR, ON); // EAST ROAD red ON
 DelaySeconds(1); // 2 seconds delay

 digitalWrite(NorthY, ON); // NOTH ROAD red+yellow ON
 DelaySeconds(2); // 2 seconds delay

 digitalWrite(NorthY, OFF); // NORTHROAD yellow OFF
 digitalWrite(NorthR, OFF); // NORTH ROAD red OFF
}

Figure 3.51: Program: trafficped.

Mastering the Arduino Uno R4 - UK.indd 99Mastering the Arduino Uno R4 - UK.indd 99 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 100

3.17 Project 16: Using the 74HC595 shift register – binary up counter
The 74HC595 chip
The 74HC595 integrated circuit supplied with the kit is a serial-in parallel-out shift register.
Shift registers are used when the number of I/O ports required for a project are not enough
and more ports are required. One such example is while controlling 8 LEDs you require 8
ports, but by using a shift register you can connect the LEDs to the parallel output ports of
the shift register and send data to the shift register through a clock. This will require only 3
pins (one for the data, one for the serial clock, and one to latch the data), therefore saving
6 I/O pins on your development board. Shift registers become even more important if you
want to control say 16 LEDs, which will require 16 ports on the development board.

Data bits are shifted into the LSB of 74HC595 and the bits move to the left at each clock
pulse. After 8 clock pulses, 8-bit data will be serially loaded into a shift register. On enabling
the Latch pin, the contents of the shift register are copied to its output as a byte. Therefore,
the serial data has been converted into parallel form.

Figure 3.52 shows the 74HC595 chip which has the following pins (some manufacturers
may use different names for the pins):

Pin				 Name		 Description
15 and 1 to 7		 Q0 to Q7	 parallel output
9				 Q7S		 used to daisy chain other chips
14				 DS		 serial data input
13				 OE		 Output enable (LOW to enable)
12				 STCP		 Latch (Data sent to output when HIGH)
11				 SHCP		 shift register clock (on the rising edge)
10				 MR		 Reset (LOW to clear)
8				 GND		 power supply ground
16				 VCC		 +5 V

Figure 3.52: The 74HC595 IC.

Mastering the Arduino Uno R4 - UK.indd 100Mastering the Arduino Uno R4 - UK.indd 100 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 101

Description: This is a binary up counter project as in Project 7 (Section 3.8), but here you
will be using the 74HC595 IC to control the LEDs.

Block diagram: Figure 3.53 shows the block diagram of the project.

Figure 3.53: Block diagram of the project.

Circuit diagram: Figure 3.54 shows the circuit diagram. Connect VCC and MR pins to
+5 V. Also, connect GND and OE pins to power supply GND. Connect the following pins to
control the shift register:

Pin 14 (DS) serial data input to pin 4
Pin 12 (STCP) latch to pin 5
Pin 11 (SHCP) clock to pin 6

Now, connect 8 LEDs to pins 1 to 7 and 15 (Q0 to Q7) through 1 kΩ (or smaller value)
current-limiting resistors. In this project, the LED at pin 15 is set to be the Most Significant
Bit (MSB).

Figure 3.54: Circuit diagram of the project.

Construction: The project was built on a breadboard and connections were made to the
development board using jumper wires. Figure 3.55 shows the Fritzing diagram of the
project.

Mastering the Arduino Uno R4 - UK.indd 101Mastering the Arduino Uno R4 - UK.indd 101 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 102

Figure 3.55: Project was built on a breadboard.

Program listing: Figure 3.56 shows the program listing (Program: ShiftReg). At the be-
ginning of the program, pins STCP, SHCP, and DS are assigned to 5, 6 and 4 respectively
where these are the pins where the chip is connected to the development board. Inside the
setup() function, these pins are configured as outputs. Inside the main program loop, a
for loop is executed from 0 to 255 with N being the integer variable. N is the decimal equiv-
alent of the binary number to be displayed on the LEDs. The latch is set to LOW initially
and the data is shifted out of the shift register. By setting the latch high, the data appears
at the outputs of the shift register, which then control the LEDs. The loop is repeated after
a 500-ms delay.

In this program, the built-in function shiftOut() is used. This function has 3 arguments:
the data pin, clock pin to be toggled, bit order, and the number to be shifted out in parallel
form. The bit order can be MSBFIRST or LSBFIRST. In this program, LSBFIRST is used
so that the LED at the LSB position is turned ON first.

//--
// 74HC595 SHIFT REGISTER LED BINARY COUNTING
// ==
//
// In this project the 74HC595 shift register chip is used and 8 LEDs
// are connected to the chip.The program counts up in binary from 0 to
// 255 with 500 ms delay between each output
//
// Author: Dogan Ibrahim
// File : ShiftReg
// Date : June, 2023
//--
int STCP = 5; // Latch pin
int SHCP = 6; // Clock pin
int DS = 4; // Data pin

void setup()

Mastering the Arduino Uno R4 - UK.indd 102Mastering the Arduino Uno R4 - UK.indd 102 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 103

{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // Data is output
}

//
// The main program counts up from 0 to 255 and displays on the LEDs
//
void loop()
{
 for (int N = 0; N < 256; N++)
 {
 digitalWrite(STCP, LOW); // Latch LOW
 shiftOut(DS, SHCP, LSBFIRST, N); // Shift out
 digitalWrite(STCP, HIGH); // Latch HIGH
 delay(500); // 500 ms delay
 }
}

Figure 3.56: Program: ShiftReg.

3.18 Project 17: Using the 74HC595 shift register — random flashing 8
LEDs
Description: This project is similar to Project 8 (Section 3.9) where 8 LEDs are flashed
randomly as if they are Christmas lights. In this project, the LEDs are connected to the
74HC595 shift register.

The block diagram and circuit diagram of the project are in Figure 3.53 and Figure 3.54.

Program listing: Figure 3.57 shows the program listing (Program: ShiftRandom). The
program is similar to the previous one, but here the built-in function random() is used to
generate integer random numbers between 1 and 255 and these numbers are sent to the
shift register to control the LEDs. The result is that the LEDs flash randomly. 500 ms delay
is used between each output.

//--
// 74HC595 SHIFT REGISTER RANDOM FLASHING LEDs
// ===
//
// In this project the 74HC595 shift register chip is used and 8 LEDs
// are connected to the chip.The program flashes the LEDs randomly
//
// Author: Dogan Ibrahim
// File : ShiftRandom
// Date : June, 2023

Mastering the Arduino Uno R4 - UK.indd 103Mastering the Arduino Uno R4 - UK.indd 103 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 104

//--
int STCP = 5; // Latch pin
int SHCP = 6; // Clock pin
int DS = 4; // Data pin

void setup()
{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // Data is output
}

//
// The main program counts up from 0 to 255 and displays on the LEDs
//
void loop()
{
 int rnd = random(1, 256); // Generate random number
 digitalWrite(STCP, LOW); // Latch LOW
 shiftOut(DS, SHCP, LSBFIRST, rnd); // Shift out
 digitalWrite(STCP, HIGH); // Latch HIGH
 delay(500); // 500 ms delay
}

Figure 3.57: Program: ShiftRandom.

3.19 Project 18: Using the 74HC595 shift register — chasing LEDs
Description: In this project, 8 LEDs are connected to the development board through the
74HC595 shift register. The LEDs chase each other as in Project 5 (Section 3.6), where only
one LED is ON at any time. The chasing is from LSB towards MSB with 500 ms between
each output.

The block diagram and circuit diagram of the project are in Figure 3.53 and Figure 3.54.

Program listing: Figure 3.58 shows the program listing (Program: ShiftChase). The pro-
gram is very similar to the previous one, but here the number to be sent to the shift register
is shifted left at each output.

//--
// 74HC595 SHIFT REGISTER CHASING LEDs
// ===================================
//
// In this project the 74HC595 shift register chip is used and 8 LEDs
// are connected to the chip.The LEDs chase each other
//

Mastering the Arduino Uno R4 - UK.indd 104Mastering the Arduino Uno R4 - UK.indd 104 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 105

// Author: Dogan Ibrahim
// File : ShiftChase
// Date : June, 2023
//--
int STCP = 5; // Latch pin
int SHCP = 6; // Clock pin
int DS = 4; // Data pin
int N = 1;

void setup()
{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // Data is output
}

//
// The main program counts up from 0 to 255 and displays on the LEDs
//
void loop()
{
 digitalWrite(STCP, LOW); // Latch LOW
 shiftOut(DS, SHCP, LSBFIRST, N); // Shift out
 digitalWrite(STCP, HIGH); // Latch HIGH
 delay(500); // 500 ms delay
 N = N << 1; // Shift left
 if(N > 128) N = 1; // If MSB lit
}

Figure 3.58: Program: ShiftChase.

3.20 Project 19: Using the 74HC595 shift register — turn ON a
specified LED
Description: In this project, 8 LEDs are connected to the development board through the
shift register as in the previous project. The user is prompted to enter a number between
0 and 7 from the keyboard. The LED corresponding to this number is turned ON for 5
seconds. After this time, all the LEDs are turned OFF and the program repeats. Bit 0 corre-
sponds to the LED at LSB position, and bit 7 corresponds to the LED at the MSB position.

The block diagram and circuit diagram of the project are as in Figure 3.53 and Figure 3.54.

Program listing: Figure 3.59 shows the program listing (Program: ShiftNo). A number
is read from the keyboard by calling function Serial.read(). The user function SetBit()
is then called. This function receives the bit number and the state to set it to. The built-in
function bitWrite() is called to set the required bit. This function has three arguments:

Mastering the Arduino Uno R4 - UK.indd 105Mastering the Arduino Uno R4 - UK.indd 105 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 106

the byte whose bit is to be set, the bit number to be set, and the value to set it to (LOW
or HIGH). On return from function SetBit() the required LED is set for 5 seconds. Notice
that function Serial.read() reads additional two bytes: the carriage return and line feed.
Variable cr is used to read these additional bytes in the program.

//--
// 74HC595 SHIFT REGISTER TURN BIT ON
// ==================================
//
// In this project the 74HC595 shift register chip is used and 8 LEDs
// are connected to the chip. An integer number is read from the keyboard
// through the Serial Monitor between 0 and 7. The LED corresponsing to
// this number is turned ON where LSB is bit number 0 and MSB is bit
// number 7. After 5 seconds the bit is cleared
//
// Author: Dogan Ibrahim
// File : ShiftNo
// Date : June, 2023
//--
int STCP = 5; // Latch pin
int SHCP = 6; // Clock pin
int DS = 4; // Data pin
int N = 1;

void setup()
{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // Data is output
 Serial.begin(9600); // Serial monitor
 delay(5000);
 Serial.println("Enter the bit no to set: ");
}

//
// This function sets the required bit
//
void SetBit(int Pin, int State)
{
 byte M = 0;
 digitalWrite(STCP, LOW); // Latch LOW
 bitWrite(M, Pin, State); // Set bit Pin of M
 shiftOut(DS, SHCP, LSBFIRST, M); // Shift out
 digitalWrite(STCP, HIGH); // Latch HIGH

Mastering the Arduino Uno R4 - UK.indd 106Mastering the Arduino Uno R4 - UK.indd 106 13-09-2023 11:1313-09-2023 11:13

Chapter 3 ● Hardware Projects with LEDs

● 107

}
//
// Read the bit number to be set (0 to 7) with LSB bit no 0
//
void loop()
{
 if(Serial.available() > 0) // Read a number (0 to 7)
 {
 int N = Serial.read() - '0';
 Serial.println(N);
 SetBit(N, HIGH); // Set bit
 delay(5000); // Delay 5 seconds
 int cr = Serial.read(); // Read carriage return
 cr = Serial.read(); // Read line feed
 SetBit(N, LOW); // Bit back to 0
 }
}

Figure 3.59: Program: ShiftNo.

3.21 Project 20: Using the 74HC595 shift register — turn ON specified
LEDs
Description: In this project, 8 LEDs are connected to the development board through the
shift register as in the previous project. an integer number is read from the keyboard be-
tween 1 and 255. The LED binary pattern corresponding to this number is displayed on the
LEDs. For example, if number 17 is entered then the LEDs shown in Figure 3.60 will be ON.

Figure 3.60: LEDs showing binary 17.

The block diagram and circuit diagram of the project are in Figure 3.53 and Figure 3.54.

Program listing: Figure 3.61 shows the program listing (Program: ShiftDec). The user
is prompted to enter an integer number between 1 and 255. The integer number is read
into variable N using the built-in function parseInt(). Then the LEDs corresponding to this
number are turned ON for 3 seconds.

//--
// 74HC595 SHIFT REGISTER TURN ON SPECIFIED LEDs
// ===
//
// In this project the 74HC595 shift register chip is used and 8 LEDs
// are connected to the chip. An integer number is read from the keyboard
// through the Serial Monitor between 1 and 255. The LEDs corresponsing to

Mastering the Arduino Uno R4 - UK.indd 107Mastering the Arduino Uno R4 - UK.indd 107 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 108

// this number are turned ON. After 3 seconds the LEDs are cleared
//
// Author: Dogan Ibrahim
// File : ShiftDec
// Date : June, 2023
//--
int STCP = 5; // Latch pin
int SHCP = 6; // Clock pin
int DS = 4; // Data pin

void setup()
{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // Data is output
 Serial.begin(9600); // Serial monitor
 delay(5000);
 Serial.println("Enter a number 1 - 255: ");
}

//
// Read the bit number to be set (0 to 7) with LSB bit no 0
//
void loop()
{
 if(Serial.available() > 0) // Read a number (0 to 7)
 {
 int N = Serial.parseInt(); // Get integer number
 Serial.println(N);
 int cr = Serial.read(); // Carriage return
 digitalWrite(STCP, LOW); // Latch LOW
 shiftOut(DS, SHCP, LSBFIRST, N); // Shift out
 digitalWrite(STCP, HIGH); // Latch HI
 delay(3000); // Delay 3 secs
 }
}

Figure 3.61: Program: ShiftDec.

Mastering the Arduino Uno R4 - UK.indd 108Mastering the Arduino Uno R4 - UK.indd 108 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 109

Chapter 4 ● 7-Segment LED Displays

4.1 Overview
In the preceding chapter, you have learned how to develop projects using LEDs only. In
this chapter, you will be using 7-segment LED displays in projects. Two types of 7-segment
LEDs are supplied in the kit: 1-digit, and 4-digit.

4.2 7-Segment LED display structure
7-segment LED displays are used frequently in electronic circuits to show numeric or al-
phanumeric values. As shown in Figure 4.1, a 7-segment LED display basically consists of
7 LEDs connected such that numbers from 0 to 9 and some letters can be displayed. Seg-
ments are identified by letters from a through g and Figure 4.2 shows the segment names
of a typical 7-segment LED display.

Figure 4.1: Some 7-segment LED displays.

Figure 4.2: Segment names of a 7-segment display.

Figure 4.3 shows how numbers from 0 to 9 can be obtained by turning ON different seg-
ments of the display.

Mastering the Arduino Uno R4 - UK.indd 109Mastering the Arduino Uno R4 - UK.indd 109 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 110

Figure 4.3: Displaying numbers 0–9 (courtesy of electronics-fun.com).

7-segment displays are available in two different configurations: common-cathode and
common-anode. As shown in Figure 4.4, in common-cathode configuration all the cath-
odes of all segment LEDs are connected together to ground or the lowest potential. The
segments are turned ON by applying a logic 1 to the required segment LED via current-lim-
iting resistors. In common-cathode configuration, the 7-segment LED is connected to the
microcontroller in current sourcing mode.

Figure 4.4: Common-cathode 7-segment display.

In a common-anode configuration, the anode terminals of all the LEDs are connected to-
gether as shown in Figure 4.5. This common point is then normally connected to the supply
voltage. A segment is turned ON by connecting its cathode terminal to logic 0 via a cur-
rent-limiting resistor. In common-anode configuration, the 7-segment LED is connected to
the microcontroller in current sinking mode.

Figure 4.5: Common-cathode 7-segment display.

Mastering the Arduino Uno R4 - UK.indd 110Mastering the Arduino Uno R4 - UK.indd 110 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 111

4.3 Project 1: 7-Segment 1-digit LED counter
Description: In this project, you will use the 1-digit display contained in the kit to count
from 0 to 9.

Block diagram: Figure 4.6 shows the project block diagram.

Figure 4.6: Block diagram of the project.

Circuit diagram: The 7-segment display supplied with the kit is type 5161AH, red, com-
mon-cathode type with a digit height of 0.56 inches. Figure 4.7 shows the display structure
with its connection diagram. This is a 10-pin display with pin 1 located as shown in the
image. Pin numbering is 1 through 5 going right from pin 1. Pins 6 through 10 are located
at the top part of the display with pin 6 at the top right-hand side. Notice where pin 1 is
situated.

Figure 4.7: The supplied display.

Figure 4.8 shows the display connected to the development board through current-limiter
resistors. The common pins of the display are connected to GND.

Mastering the Arduino Uno R4 - UK.indd 111Mastering the Arduino Uno R4 - UK.indd 111 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 112

Figure 4.8: Circuit diagram of the project.

The connections between the ports and the 7-segment LED pins are as follows:

7-segment LED pin		 Port pin
	 a (pin 7)		 2
	 b (pin 6)		 3
	 c (pin 4)			 4
	 d (pin 2)		 5
	 e (pin 1)		 6
	 f (pin 9)			 7
	 g (pin 10)		 8
	 common (pins 3,8)	 GND

Before using a 7-segment display, you have to map the pins to the MCU ports. Table 4.1
shows the number to be displayed and the data to be sent to the port pins. Notice that the
MSB bit (shown as x in the table) is not used and is set to 0.

Number x g f e d c b a Port data in Hex

0 0 0 1 1 1 1 1 1 0x3F

1 0 0 0 0 0 1 1 0 0x06

2 0 1 0 1 1 0 1 1 0x5B

3 0 1 0 0 1 1 1 1 0x4F

4 0 1 1 0 0 1 1 0 0x66

5 0 1 1 0 1 1 0 1 0x6D

6 0 1 1 1 1 1 0 1 0x7D

7 0 0 0 0 0 1 1 1 0x07

8 0 1 1 1 1 1 1 1 0x7F

9 0 1 1 0 1 1 1 1 0x6F

	 Table 4.1: Number to be displayed and port data.

Mastering the Arduino Uno R4 - UK.indd 112Mastering the Arduino Uno R4 - UK.indd 112 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 113

Program listing: Figure 4.9 shows the program listing (Program: SevenSeg1). Array
LED stores the pin numbers corresponding to the connections between the display and the
development board ports. Array SEG stores the mapping between the numbers and the
data to be sent to display a number as shown in Table 4.1. At the beginning of the program,
the used ports are configured as outputs. Function Display() groups a number of port pins
and sends data to the group. This function has two arguments: the number to be displayed,
and the data width. Here, 8 port pins are grouped together (MSB bit is not used) and hex-
adecimal byte data is sent to the group as shown in Table 4.1. Variable Count stores the
number to be sent to the display. The program displays numbers 0 to 9 continuously with
one second delay between each display. Notice that Count is reset to 0 when it reaches 10.

//--
// 7-SEGMENT DISPLAY COUNTER
// =========================
//
// This is a 7-segment LED counter which counts up every second 0 to 9
//
// Author: Dogan Ibrahim
// File : SevenSeg1
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {9, 8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 8
unsigned char SEG[] = {0x3F,0x06,0x5B,0x4F,0x66, // See Table 4.1
 0x6D, 0x7D, 0x07, 0x7F, 0x6F};

int Count = 0; // COunt=0 to start with

void setup()
{
 for(int i = 0; i < 8; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure as outputs
 }
}

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

Mastering the Arduino Uno R4 - UK.indd 113Mastering the Arduino Uno R4 - UK.indd 113 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 114

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

void loop()
{
 unsigned char Pattern = SEG[Count]; // Get number to send to
 Display(Pattern, 8); // Display the number
 Count++; // Increment Count
 if(Count == 10) Count = 0; // If Count=10, set to 0
 delay(1000); // 1 second delay
}

Figure 4.9: Program: SevenSeg1.

Suggestion
Note that the program can be made more readable if you create a function to display the
required number and then call this function from the main program.

4.4 Project 2: 7-Segment 4-digit multiplexed LED display
Project Description
This project is similar to the previous project but here multiplexed four digits are used
instead of one digit. The program displays fixed number '5346' on the 7-segment display.

Block diagram: Figure 4.10 shows the project block diagram.

Figure 4.10: Block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 114Mastering the Arduino Uno R4 - UK.indd 114 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 115

Circuit diagram: The 7-segment 4-digit display supplied with the kit is a red, com-
mon-cathode type, with digit heights of 0.36 inches. Figure 4.11 shows the display struc-
ture with its connection diagram. The display features one decimal point per digit. The LEDs
have a forward voltage of 1.8 VDC and a max. forward current of 30 mA. The hardware
interface is 12 (two rows of 6) through-hole pins. Pin 1 is located as shown in the image.
Pins 1 to 6 are at the bottom, and pins 7 to 12 are at the top with pin 7 at the top right-hand
side. Corresponding a-g pins of each digit are connected together. Digit 1 is the leftmost
digit.

Figure 4.11: The supplied display.

The individual digits of multiplexed 7-segment displays are normally enabled using tran-
sistors as shown in Figure 4.12. This is because the current sourcing/sinking capabilities of
the MCU may not be enough to turn ON the required segments. In general, any NPN-type
transistor can be used (e.g., the BC337).

Mastering the Arduino Uno R4 - UK.indd 115Mastering the Arduino Uno R4 - UK.indd 115 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 116

Figure 4.12: Enabling digits using transistors.

In Arduino Uno R4-based projects, each I/O pin can handle 8 mA of current and in total no
more than 60 mA should be drawn from all the GPIO ports. With 1-kohm current-limiting
resistors, each segment draws about 3 mA. If all segments of a digit are ON (e.g., display-
ing number 8), the required current for the digit is 3 × 7 = 21 mA which is too high for the
Uno R4 GPIO pins. It is therefore necessary to use transistor switch circuits (Figure 4.13).

Figure 4.13: Transistor switch circuit.

The connections between the ports and the 7-segment LED pins are as follows:

7-segment 		 LED pin		 Port pin
	 a 		 (pin 11)		 2
	 b 		 (pin 7)		 3
	 c 		 (pin 4)		 4
	 d 		 (pin 2)		 5
	 e 		 (pin 1)		 6
	 f 		 (pin 10)		 7

Mastering the Arduino Uno R4 - UK.indd 116Mastering the Arduino Uno R4 - UK.indd 116 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 117

	 g 		 (pin 5)		 8
	 DIG1 		 (pin 12)		 9 via transistor
	 DIG2 		 (pin 9)		 10 via transistor
	 DIG3 		 (pin 8)		 11 via transistor
	 DIG4 		 (pin 6)		 12 via transistor

Program Listing: By displaying each digit for several milliseconds the eye can not differ-
entiate that the digits are not ON all the time. This way you can multiplex any number of
7-segment displays together. For example, to display the number 5346, you have to send
5 to the first digit and enable its common pin. After a few milliseconds, number 3 is sent
to the second digit and the common point of the second digit is enabled, and so on When
this process is repeated continuously, the user sees as if both displays are ON continuously.

Figure 4.14 shows the program listing (Program: SevenSeg2). At the beginning of the
program, the display pins are assigned to the ports. Array LED[] stores the LED segment
port assignments, array SEG[] stores the bit pattern to turn on a digit, and array DIGITS[]
stores the digit port assignments. Inside the setup() function, all LED pins and digit pins
are configured as output and the digits are disabled. The program is similar to the one with
one digit. Here, number 5 is sent to digit 1 (MSD) and DIGITS[0] is enabled for about 5
milliseconds. Then, DIGITS[0] is disabled and number 3 is sent to digit 2 and DIGITS[1]
is enabled for about 5 milliseconds. Then, DIGITS[1] is disabled and number 4 is sent to
the third digit and DIGITS[2] is enabled for about 5 milliseconds. Finally, DIGITS[2] is
disabled and number 6 is sent to the last digit (LSD) and DIGITS[3] is enabled for about 5
milliseconds. This process is repeated after disabling DIGITS[3], thus displaying number
'5346' on the 7-segment display.

//--
// 7-SEGMENT 4-DIGIT DISPLAY
// =========================
//
// This is a 7-segment 4-digit display program. Number 5346 is displayed
//
// Author: Dogan Ibrahim
// File : SevenSeg2
// Date : June, 2023
//--
#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 8
unsigned char SEG[] = {0x3F,0x06,0x5B,0x4F,0x66, // See Table 4.1
 0x6D, 0x7D, 0x07, 0x7F, 0x6F};
unsigned char DIGITS[] = {9, 10, 11, 12}; // DIGIT ports
unsigned int Cnt = 5346; // Number to display
unsigned int Dig1, Dig2, Dig3, Dig4, Dig5, Dig6;
int Pattern;
#define Enable HIGH

Mastering the Arduino Uno R4 - UK.indd 117Mastering the Arduino Uno R4 - UK.indd 117 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 118

#define Disable LOW

//
// COnfigure LED segments and digits as outputs
//
void setup()
{
 for(int i = 0; i < 7; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure as outputs
 }

 for(int i = 0; i < 4; i++)
 {
 pinMode(DIGITS[i], OUTPUT); // Configure as outputs
 digitalWrite(DIGITS[i], Disable); // All digits are OFF
 }
}

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

void loop()
{
 Dig1 = Cnt / 1000; // 1000s digit
 Pattern = SEG[Dig1]; // Get the bit pattern

Mastering the Arduino Uno R4 - UK.indd 118Mastering the Arduino Uno R4 - UK.indd 118 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 119

 Display(Pattern, 7); // Send to display
 digitalWrite(DIGITS[0], Enable); // Enable DIG1
 delay(5); // Wait a while
 digitalWrite(DIGITS[0], Disable); // Disable DIG1

 Dig2 = Cnt % 1000;
 Dig3 = Dig2 / 100; // 100s digit
 Pattern = SEG[Dig3]; // Get the bit pattern
 Display(Pattern, 7); // Send to display
 digitalWrite(DIGITS[1], Enable); // Enable DIG2
 delay(5); // Wait a while
 digitalWrite(DIGITS[1], Disable); // Disable DiG2

 Dig4 = Dig2 % 100;
 Dig5 = Dig4/10; // 10s digit
 Pattern = SEG[Dig5]; // Get the bit pattern
 Display(Pattern, 7); // Send to display
 digitalWrite(DIGITS[2], Enable); // Enable DIG3
 delay(5); // Wait a while
 digitalWrite(DIGITS[2], Disable); // Disable DIG3

 Dig6 = Dig4 % 10; // 1s digit
 Pattern = SEG[Dig6]; // Get the bit pattern
 Display(Pattern, 7); // Send to display
 digitalWrite(DIGITS[3], Enable); // Enable DIG4
 delay(5); // Wait a while
 digitalWrite(DIGITS[3], Disable); // Disable DIG4
}

Figure 4.14: Program: SevenSeg2.

4.5 Project 3: 7-Segment 4-digit multiplexed LED display counter –
timer interrupts
Why timer interrupts?
In the previous example, you displayed a fixed number on the 7-segment display. This was
not a real application since you may almost always want to display different numbers. For
example, during counting different numbers are displayed. The problem here is that the
7-segment display has to be refreshed nearly every few milliseconds and the CPU cannot
refresh the display and at the same time execute other user code as it requires multitask-
ing. The solution is to refresh the display in a timer interrupt routine and carry out the
normal user tasks in the main program.

In this program, you will refresh the display in the timer interrupt service routine and then
send data to the display in the main program. Before doing this, it is worthwhile to review
the Arduino UNO R4 timers and timer interrupts.

Mastering the Arduino Uno R4 - UK.indd 119Mastering the Arduino Uno R4 - UK.indd 119 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 120

Timer interrupts
The Arduino UNO R4 is based on the Renesas RA4M1 processor. This processor has the
following built-in timers:

2× 32-bit General PWM timer (GPT32)
6× 16-bit General PWM timer (GPT16)
2× 16-bit Asynchronous General Purpose timer (AGT)

Watchdog timer (WDT)
The General PWM Timer (GPT) is a 32-bit timer with 2 channels and a 16-bit timer with 6
channels. PWM waveforms can be generated by controlling the up-counter, down-counter,
or the up- and down-counter. In addition, PWM waveforms can be generated for controlling
brushless DC motors. The GPT can also be used as a general-purpose timer. You can explic-
itly request a timer that has been reserved for PWM.

The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events. One
of these timers is used to provide Arduino millis() and microseconds() methods. This 16-bit
timer consists of a reload register and a down counter. The reload register and the down
counter are allocated to the same address, and they can be accessed with the AGT register.

The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh
the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an under-
flow. A refresh-permitted period can be set to refresh the counter and used as the condition
to detect when the system runs out of control.

Description: In this project, you will count up every second and display on the 7-segment
display. A timer will be used to refresh the display every 5 milliseconds inside the timer
interrupt service routine.

The block diagram and circuit diagram of the project are in Figure 4.10 and 4.13 respec-
tively.

Program listing: Figure 4.15 shows the program listing (Program: SevenSeg3). The pro-
gram uses the Arduino Uno R4 FspTimer core functions. At the beginning of the program,
the FspTimer header is included and the interface between the 7-segment multiplexed
display and the development board I/O ports are defined and all set as outputs. All the
digits are disabled inside the setup() function. Function Display() groups the I/O bits
together as a port so that the bits can be accessed together. Function StartTimer() gets
an available GPT timer with its index set to TimerIndex. The timer mode is set to periodic,
its frequency is set to freq (200), and the interrupt service routine is named the function
TimerCallback(). The allocated timer is then opened and started. Inside the TimerCall-
back() function, the digits are sent to the 7-segment display with each digit being dis-
played for 5 milliseconds. i.e., the display is refreshed every 5 milliseconds. Variable flag
determines which digit should be refreshed such that if flag = 0 the digit 1 is refreshed

Mastering the Arduino Uno R4 - UK.indd 120Mastering the Arduino Uno R4 - UK.indd 120 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 121

and so on. Inside the main program loop, variable cnt is incremented by one. When cnt is
greater than 9999, then it is reset to 0 and counting continues. A one-second delay is used
between each output count.

//--
// 7-SEGMENT 4-DIGIT DISPLAY COUNTER
// =================================
//
// This is a 7-segment 4-digit display program. The display counts up
// every second. Timer interrupts are used to refresh the display. The
// timer is configured to interrupt at every 5 ms (i.e 200 Hz)
//
// Author: Dogan Ibrahim
// File : SevenSeg3
// Date : June, 2023
//--
#include "FspTimer.h"
FspTimer MyTimer;

#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 8
unsigned char SEG[] = {0x3F,0x06,0x5B,0x4F,0x66, // See Table 4.1
0x6D, 0x7D, 0x07, 0x7F, 0x6F};
unsigned char DIGITS[] = {9, 10, 11, 12}; // DIGIT ports
unsigned int MSD, m, MID2, n, MID1, LSD;
unsigned char Pattern;
int cnt = 0;
int flag = 0;
uint8_t TimerType;
int8_t TimerIndex;
#define Enable HIGH
#define Disable LOW

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;

Mastering the Arduino Uno R4 - UK.indd 121Mastering the Arduino Uno R4 - UK.indd 121 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 122

 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

//
// TIMER interrupt service routine (every 5 ms, 200 Hz)
//
void TimerCallback(timer_callback_args_t __attribute((unused)) *p_args)
{
 MSD = cnt / 1000; // Get MSD
 m = cnt % 1000;
 MID2 = m / 100; // Get MID2
 n = m % 100;
 MID1 = n / 10; // Get MID1
 LSD = n % 10; // Get LSD

 if(flag == 0)
 {
 digitalWrite(DIGITS[3], Disable); // Disable DIG4
 Pattern = SEG[MSD]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[0], Enable); // Enable DIG1
 flag++;
 }
 else if(flag == 1)
 {
 digitalWrite(DIGITS[0], Disable); // Disable DIG1
 Pattern = SEG[MID2]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[1], Enable); // Enable DIG2
 flag++;
 }
 else if(flag == 2)
 {
 digitalWrite(DIGITS[1], Disable); // DIsable DIG2;
 Pattern = SEG[MID1]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[2], Enable); // Enable DIG3
 flag++;
 }
 else if(flag == 3)

Mastering the Arduino Uno R4 - UK.indd 122Mastering the Arduino Uno R4 - UK.indd 122 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 123

 {
 digitalWrite(DIGITS[2], Disable); // Disable DIG3
 Pattern = SEG[LSD]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[3], Enable); // Enable DIG4
 flag = 0;
 }
}

//
// Get a GPT timer, set its mode, define callback ISR and start the timer
//

void StartTimer(float freq)
{
 TimerType = GPT_TIMER;
 TimerIndex = FspTimer::get_available_timer(TimerType);
 if (TimerIndex == 0)
 {
 FspTimer::force_use_of_pwm_reserved_timer();
 TimerIndex = FspTimer::get_available_timer(TimerType);
 }

 MyTimer.begin(TIMER_MODE_PERIODIC, TimerType, TimerIndex, freq, 0.0f,
TimerCallback);
 MyTimer.setup_overflow_irq();
 MyTimer.open();
 MyTimer.start();
}

//
// Configure segment LEDs as outputs, set timer for 200 Hz
//
void setup()
{
 for(int i = 0; i < 7; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure as outputs
 }

 for(int i = 0; i < 4; i++)
 {
 pinMode(DIGITS[i], OUTPUT); // Configure as outputs
 digitalWrite(DIGITS[i], Disable); // All digits are OFF
 }

Mastering the Arduino Uno R4 - UK.indd 123Mastering the Arduino Uno R4 - UK.indd 123 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 124

//
// Timer1 configuration for 5ms (200Hz) interrupts
//
 StartTimer(200); // Set for 200 Hz
}

//
// Main program loop. Increment count here and delay 1 second
//
void loop()
{
 cnt++; // Increment count
 if(cnt > 9999) cnt = 0; // If 9999, reset to 0
 delay(1000); // Delay 1 second
}

Figure 4.15: Program: SevenSeg3.

4.6 Project 4: 7-Segment 4-digit multiplexed LED display counter —
blanking leading zeroes
Description: In the program in Figure 4.15 the leading digits are shown as 0 when the
number is lower than these digits. For example, the number 12 is displayed as 0012 and
not as 12. That's not desirable in many applications. In this project, let's disable the leading
zeroes.

Program listing: Figure 4.16 shows the modified program (Program: SevenSeg4) shows
how you can blank the leading 0s by disabling their digits. For example, digit 1 is enabled if
the number to be displayed is greater than 999, digit 2 is enabled if the number is greater
than 99 and so on.

//--
// 7-SEGMENT 4-DIGIT DISPLAY COUNTER
// =================================
//
// This is a 7-segment 4-digit display program. The display counts up
// every second. Timer interrupts are used to refresh the display. The
// timer is configured to interrupt at every 5 ms (i.e 200 Hz)
//
// In this program the leading zeroes are disabled so that for example
// number 12 is shown as 12 and not as 0012
//
// Author: Dogan Ibrahim
// File : SevenSeg4
// Date : June, 2023
//--
#include "FspTimer.h"

Mastering the Arduino Uno R4 - UK.indd 124Mastering the Arduino Uno R4 - UK.indd 124 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 125

FspTimer MyTimer;

#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 8
unsigned char SEG[] = {0x3F,0x06,0x5B,0x4F,0x66, // See Table 4.1
0x6D, 0x7D, 0x07, 0x7F, 0x6F};
unsigned char DIGITS[] = {9, 10, 11, 12}; // DIGIT ports
unsigned int MSD, m, MID2, n, MID1, LSD;
unsigned char Pattern;
int cnt = 0;
int flag = 0;
uint8_t TimerType;
int8_t TimerIndex;
#define Enable HIGH
#define Disable LOW

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

//
// TIMER interrupt service routine (every 5 ms, 200 Hz)
//
void TimerCallback(timer_callback_args_t __attribute((unused)) *p_args)
{
 MSD = cnt / 1000; // Get MSD
 m = cnt % 1000;
 MID2 = m / 100; // Get MID2

Mastering the Arduino Uno R4 - UK.indd 125Mastering the Arduino Uno R4 - UK.indd 125 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 126

 n = m % 100;
 MID1 = n / 10; // Get MID1
 LSD = n % 10; // Get LSD

 if(flag == 0)
 {
 digitalWrite(DIGITS[3], Disable); // Disable DIG4
 Pattern = SEG[MSD]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 999)digitalWrite(DIGITS[0], Enable); // Enable DIG1
 flag++;
 }
 else if(flag == 1)
 {
 digitalWrite(DIGITS[0], Disable); // Disable DIG1
 Pattern = SEG[MID2]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 99)digitalWrite(DIGITS[1], Enable); // Enable DIG2
 flag++;
 }
 else if(flag == 2)
 {
 digitalWrite(DIGITS[1], Disable); // DIsable DIG2;
 Pattern = SEG[MID1]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 9)digitalWrite(DIGITS[2], Enable); // Enable DIG3
 flag++;
 }
 else if(flag == 3)
 {
 digitalWrite(DIGITS[2], Disable); // Disable DIG3
 Pattern = SEG[LSD]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[3], Enable); // Enable DIG4
 flag = 0;
 }
}

//
// Get a GPT timer, set its mode, define callback ISR and start the timer
//

void StartTimer(float freq)
{
 TimerType = GPT_TIMER;
 TimerIndex = FspTimer::get_available_timer(TimerType);

Mastering the Arduino Uno R4 - UK.indd 126Mastering the Arduino Uno R4 - UK.indd 126 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 127

 if (TimerIndex == 0)
 {
 FspTimer::force_use_of_pwm_reserved_timer();
 TimerIndex = FspTimer::get_available_timer(TimerType);
 }

 MyTimer.begin(TIMER_MODE_PERIODIC, TimerType, TimerIndex, freq, 0.0f,
TimerCallback);
 MyTimer.setup_overflow_irq();
 MyTimer.open();
 MyTimer.start();
}

//
// Configure segment LEDs as outputs, set timer for 200 Hz
//
void setup()
{
 for(int i = 0; i < 7; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure as outputs
 }

 for(int i = 0; i < 4; i++)
 {
 pinMode(DIGITS[i], OUTPUT); // Configure as outputs
 digitalWrite(DIGITS[i], Disable); // All digits are OFF
 }

//
// Timer1 configuration for 5ms (200Hz) interrupts
//
 StartTimer(200); // Set for 200 Hz
}

//
// Main program loop. Increment count here and delay 1 second
//
void loop()
{
 cnt++; // Increment count
 if(cnt > 9999) cnt = 0; // If 9999, reset to 0
 delay(1000); // Delay 1 second
}

Figure 4.16: Program: SevenSeg4.

Mastering the Arduino Uno R4 - UK.indd 127Mastering the Arduino Uno R4 - UK.indd 127 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 128

4.7 Project 5: 7-Segment 4-digit multiplexed LED display — reaction
timer
Description: This project measures the reaction time of the user and displays it on the
7-segment display in milliseconds. The project is similar to Project 11 (Section 3.12), but
here the result is sent to the 7-segment display. The on-board LED is turned ON at random
times. As soon as the user sees the LED he/she is expected to press the button. The time
delay between seeing the LED and pressing the button is a measure of the reaction time
which is displayed by the program.

Block diagram: Figure 4.17 shows the block diagram of the project where a button, an
LED, and a 4-digit multiplexed LED display are used.

Figure 4.17: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.18. The display
is connected as in the previous project. The LED and button are connected to ports 13 and
0 of the development board respectively (notice that port 13 is where the on-board LED is
connected to).

Mastering the Arduino Uno R4 - UK.indd 128Mastering the Arduino Uno R4 - UK.indd 128 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 129

Figure 4.18: Circuit diagram of the project.

Program listing: Figure 4.19 shows the program listing (Program: SevenReaction). In-
side the setup() function, the display digits, the LED, and the button are configured. The
button is configured as an input with internal pullup so that normally it is at logic 1. Press-
ing the button changes its state to logic 0. Most parts of the program are similar to Figure
4.16. Here, inside the main program loop, a random number is generated between 1 and
20 seconds, and the program is configured to wait for some random time before turning
ON the LED. At this point, the time is read by calling built-in function millis() and is stored
in variable StartTime. When the button is pressed the time is read again and stored in
EndTime. The difference between the EndTime and StartTime is the reaction time of
the user. This is converted into an integer number in variable cnt and is displayed on the
7-segment LED. The program repeats after 5 seconds of delay.

//--
// 7-SEGMENT 4-DIGIT DISPLAY REACTION TIMER
// ==
//
// This is a 7-segment 4-digit reaction timer program. An LED is lit
// at random time. The user is expected to press the button as soon as
// he/she sees the LED turning ON. The elapsed time between the LED
// becoming ON and the user pressing the button is displayed in milliseconds.
// Maximum reaction time that can be displyed is 9999 ms
//
// Author: Dogan Ibrahim
// File : SevenReaction
// Date : June, 2023
//--
#include "FspTimer.h"
FspTimer MyTimer;

Mastering the Arduino Uno R4 - UK.indd 129Mastering the Arduino Uno R4 - UK.indd 129 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 130

#define ON HIGH // Define ON
#define OFF LOW // Define OFF
int LED[] = {8, 7, 6, 5, 4, 3, 2}; // LEDs at ports 2 to 8
unsigned char SEG[] = {0x3F,0x06,0x5B,0x4F,0x66, // See Table 4.1
0x6D, 0x7D, 0x07, 0x7F, 0x6F};
unsigned char DIGITS[] = {9, 10, 11, 12}; // DIGIT ports
unsigned int MSD, m, MID2, n, MID1, LSD;
unsigned char Pattern;
int cnt = 0;
int flag = 0;
uint8_t TimerType;
int8_t TimerIndex;
int RLED = 13;
int Button = 0;
#define Enable HIGH
#define Disable LOW

//
// Group the port pins together. L is the number of bits (8 here),and No
// is the data to be displayed
//
void Display(int No, int L)
{
 int i, m, j;

 m = L - 1;
 for(i = 0; i < L; i++)
 {
 j = 1;
 for(int k = 0; k < m; k++)j = j * 2;
 if((No & j) != 0)
 digitalWrite(LED[i], ON);
 else
 digitalWrite(LED[i], OFF);
 m--;
 }
}

//
// TIMER interrupt service routine (every 5 ms, 200 Hz)
//
void TimerCallback(timer_callback_args_t __attribute((unused)) *p_args)
{
 MSD = cnt / 1000; // Get MSD
 m = cnt % 1000;

Mastering the Arduino Uno R4 - UK.indd 130Mastering the Arduino Uno R4 - UK.indd 130 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 131

 MID2 = m / 100; // Get MID2
 n = m % 100;
 MID1 = n / 10; // Get MID1
 LSD = n % 10; // Get LSD

 if(flag == 0)
 {
 digitalWrite(DIGITS[3], Disable); // Disable DIG4
 Pattern = SEG[MSD]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 999)digitalWrite(DIGITS[0], Enable); // Enable DIG1
 flag++;
 }
 else if(flag == 1)
 {
 digitalWrite(DIGITS[0], Disable); // Disable DIG1
 Pattern = SEG[MID2]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 99)digitalWrite(DIGITS[1], Enable); // Enable DIG2
 flag++;
 }
 else if(flag == 2)
 {
 digitalWrite(DIGITS[1], Disable); // DIsable DIG2;
 Pattern = SEG[MID1]; // Get pattern
 Display(Pattern, 7); // Display number
 if(cnt > 9)digitalWrite(DIGITS[2], Enable); // Enable DIG3
 flag++;
 }
 else if(flag == 3)
 {
 digitalWrite(DIGITS[2], Disable); // Disable DIG3
 Pattern = SEG[LSD]; // Get pattern
 Display(Pattern, 7); // Display number
 digitalWrite(DIGITS[3], Enable); // Enable DIG4
 flag = 0;
 }
}

//
// Get a GPT timer, set its mode, define callback ISR and start the timer
//

void StartTimer(float freq)
{
 TimerType = GPT_TIMER;

Mastering the Arduino Uno R4 - UK.indd 131Mastering the Arduino Uno R4 - UK.indd 131 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 132

 TimerIndex = FspTimer::get_available_timer(TimerType);
 if (TimerIndex == 0)
 {
 FspTimer::force_use_of_pwm_reserved_timer();
 TimerIndex = FspTimer::get_available_timer(TimerType);
 }

 MyTimer.begin(TIMER_MODE_PERIODIC, TimerType, TimerIndex, freq, 0.0f,
TimerCallback);
 MyTimer.setup_overflow_irq();
 MyTimer.open();
 MyTimer.start();
}

//
// Set all digits OFF
//
void ALLOFF()
{
 for(int i = 0; i < 4; i++)
 digitalWrite(DIGITS[i], Disable); // All digits are OFF
}

//
// Configure segment LEDs as outputs, set timer for 200 Hz
//
void setup()
{
 for(int i = 0; i < 7; i++)
 {
 pinMode(LED[i], OUTPUT); // Configure as outputs
 }

 for(int i = 0; i < 4; i++)
 {
 pinMode(DIGITS[i], OUTPUT); // Configure as outputs
 }
 ALLOFF(); // All digits OFF

 pinMode(RLED, OUTPUT);			 // On-board LED
 digitalWrite(RLED, OFF);
 pinMode(Button, INPUT_PULLUP);		 // Button
 delay(2000);

//
// Timer1 configuration for 5ms (200Hz) interrupts

Mastering the Arduino Uno R4 - UK.indd 132Mastering the Arduino Uno R4 - UK.indd 132 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 133

//
 StartTimer(200); // Set for 200 Hz
}

//
// Main program loop. Increment count here and delay 1 second
//
void loop()
{
 MyTimer.stop();
 ALLOFF();
 int rnd = random(1, 21); // Random number 1-20
 delay(rnd*1000); // Random delay 1-20 secs
 digitalWrite(RLED, ON); // LED ON
 cnt=0; // Clear cnt
 float StartTime = millis(); // Start time
 while(digitalRead(Button) == 1); // Wait for button press
 float EndTime = millis(); // End time
 digitalWrite(RLED, OFF); // LED OFF
 float ElapsedTime = EndTime - StartTime; // Elapsed time
 cnt = int(ElapsedTime); // Display reaction time
 MyTimer.start();
 delay(5000); // 3 seconds delay
}

Figure 4.19: Program: SevenReaction.

4.8 Project 6: Timer interrupt blinking on-board LED
Description: Now that you have learned how to use timer interrupts in your programs, in
this project you will blink the on-board LED at port 13 every second using timer interrupts
instead of delays. The aim of this project is to show how to generate 1-second-timer in-
terrupts.

Program listing: In this project, you want to generate timer interrupts every second. i.e.,
the frequency of the interrupts is 1 Hz.

Figure 4.20 shows the program listing (Program: LEDtimer). As in the previous project tim-
er interrupts are configured in the setup() function. The state of the LED is toggled inside
the timer interrupt service routine. The main program loop does not have any code in this
project.

Mastering the Arduino Uno R4 - UK.indd 133Mastering the Arduino Uno R4 - UK.indd 133 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 134

//--
// BLINKING THE ON-BOARD LED USING TIMER INTERRUPTS
// ==
//
// In this project the on-board LED at port 13 is blinked every second
// using timer interrupts
//
// Author: Dogan Ibrahim
// File : LEDtimer
// Date : June, 2023
//--
#include "FspTimer.h"
FspTimer MyTimer;

uint8_t TimerType;
int8_t TimerIndex;
#define LED 13 // On-board LED at 13

//
// TIMER interrupt service routine (every sec, 1 Hz)
//
void TimerCallback(timer_callback_args_t __attribute((unused)) *p_args)
{
 digitalWrite(LED, digitalRead(LED) ^ 1); // Toggle LED status
}

//
// Get a GPT timer, set its mode, define callback ISR and start the timer
//

void StartTimer(float freq)
{
 TimerType = GPT_TIMER;
 TimerIndex = FspTimer::get_available_timer(TimerType);
 if (TimerIndex == 0)
 {
 FspTimer::force_use_of_pwm_reserved_timer();
 TimerIndex = FspTimer::get_available_timer(TimerType);
 }

 MyTimer.begin(TIMER_MODE_PERIODIC, TimerType, TimerIndex, freq, 0.0f,
TimerCallback);
 MyTimer.setup_overflow_irq();
 MyTimer.open();
 MyTimer.start();

Mastering the Arduino Uno R4 - UK.indd 134Mastering the Arduino Uno R4 - UK.indd 134 13-09-2023 11:1313-09-2023 11:13

Chapter 4 ● 7-Segment LED Displays

● 135

}

//
// Configure segment LEDs as outputs, set timer for 200 Hz
//
void setup()
{
 pinMode(LED, OUTPUT); // Configure as outputs
 StartTimer(1); // Set Timer for 1 Hz
}

void loop()
{
}

Figure 4.20: Program: LEDtimer.

Mastering the Arduino Uno R4 - UK.indd 135Mastering the Arduino Uno R4 - UK.indd 135 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 136

Chapter 5 ● Liquid Crystal Displays

5.1 Overview
In microcontroller-based systems, you usually want to interact with the system, for exam-
ple, to enter a parameter, to change the value of a parameter, or to display the output of
a measured variable. Data is usually entered into a system using a switch, a small keypad,
or a full-blown keyboard. Data is usually displayed using an indicator such as one or more
LEDs, 7-segment displays, LCDs, GLCDs, TFTs, OLEDs, etc. LCDs have the advantage that
they are relatively cheap and can display alphanumeric as well as some graphical data.
Some LCDs have 40 or more-character lengths, with the capability to display data in several
lines. Some other LCDs can be used to display graphical images (Graphical LCDs, or simply
GLCDs), such as animation. Some displays are single or multi-color, while others incorpo-
rate backlighting so that they can be viewed in dimly lit conditions.

LCDs can be connected to a microcontroller either in parallel form or through the I2C in-
terface. Parallel LCDs (e.g. Hitachi HD44780) are connected using more than one data line
and several control lines and the data is transferred in parallel form. It is common to use
either 4 or 8 data lines and two or more control lines. Using a 4-wire connection saves I/O
pins but it is slower since the data is transferred in two stages. I2C-based LCDs on the other
hand are connected to a microcontroller using just 2 wires: the data and the clock. I2C-
based LCDs are in general much easier to use and require less wiring, but they cost more
than the parallel ones.

Low-level programming of LCDs is a complex task and requires a good understanding of
the internal operations of the LCD controllers, including knowledge of their exact timing
requirements. Fortunately, there are several libraries that can be used to simplify the use
of both parallel and I2C-based LCDs.

In this chapter, you will be using the I2C-based LCD supplied with the kit in various projects.
Before going into details of the LCD, it is worthwhile to first review the basic principles of
the I2C bus.

5.2 The I2C bus
The I2C (or Inter-Integrated Circuit) bus was invented by Philips Semiconductor in 1982 for
connecting peripheral devices and microcontrollers over short distances. The bus uses two
open collector (or open-drain) bidirectional lines pulled up with resistors. SDA is the Serial
Data line and SCL is the Serial Clock Line. Although the bus is bidirectional, data can only
travel in one direction at any time. I2C is a bus with 7-bit address space and achieves bus
speeds of 100 kbits/s in standard mode and 400 kbits/s in fast mode (faster bus speeds are
also available with Version 2.0 of the bus protocol). Devices on the bus can be one or more
master nodes and one or more slave nodes. The master nodes initiate the communication
and generate the clock signals on the bus. Slave nodes receive the clock signals and they
respond when addressed by a master.

Mastering the Arduino Uno R4 - UK.indd 136Mastering the Arduino Uno R4 - UK.indd 136 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 137

Figure 5.1 shows an example I2C system with one master and three slaves. In a typical ap-
plication, the master initiates the communication on the bus by signaling a start condition.
This is followed by 7 bits of address information (10-bit addressing mode is also available),
and one data direction bit, where a LOW means that the master is writing to the slave, and
a HIGH means that the master is reading from the slave. With 7 bits of address, up to 128
devices can be connected to the bus. When reading and writing to the bus, you have to
specify the device address, register address and the number of bytes.

Figure 5.1: I2C bus with one master and three slaves.

5.3 I2C ports of the development board
The Arduino Uno R4 Minima development board has one I2C bus interface module, and it is
available on the following pins:

	 A4	 SDA	 also marked at the end of the long header
	 A5	 SCL	 also marked at the end of the long header

The controller will send out information through the I2C bus to a 7-bit address, meaning
that the technical limit of I2C devices on a single line is 128. Practically, you're never going
to reach 128 devices before other limitations kick in.

Note: Pullup resistors are not mounted on the PCB but there are footprints to do so if
needed.

5.4 I2C LCD
I2C-based LCD displays are normally supplied in two parts: the LCD display, and the I2C
controller board. In most standard product distributions, the controller board is soldered to
the back of the LCD display shown in Figure 5.2. The LCD display is basically a 1602-type
parallel LCD. The controller board consists of the PCF8574 I2C controller chip (from Texas
Instruments or NXP semiconductors), a small potentiometer to adjust the contrast, I/O
interface pins, and address selection jumpers.

Mastering the Arduino Uno R4 - UK.indd 137Mastering the Arduino Uno R4 - UK.indd 137 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 138

Figure 5.2: Standard I2C-based LCD.

Some distributors supply the I2C-based LCDs in two separate parts shown in Figure 5.3.
The controller board is type PCF8574T from Texas Instruments, and it must be soldered to
the LCD display before it can be used. The controller board has 4 pins: SCL, SDA, VCC, and
GND and these must be soldered to the development board I/O pins shown in Figure 5.4.

Figure 5.3: I2C LCD parts included in the kit.

Figure 5.4: Solder the I2C controller board to the LCD.

Mastering the Arduino Uno R4 - UK.indd 138Mastering the Arduino Uno R4 - UK.indd 138 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 139

As shown in Figure 5.5, on some LCDs the I2C address of the PCF8574T chip is selected by
3 jumpers labelled A0, A1 and A2 on the controller board. By default, the address is set to
0x27 (i.e., no jumper connections).

Figure 5.5: I2C address selection.

Before using the I2C LCD, you have to add the I2C library to your IDE. Libraries are often
distributed as a ZIP file or folder where the name of the folder is the name of the library.
Inside the folder, there is a .cpp file, a .h file, a keywords.txt file, examples folder, and
other files that may be required by the library. You should not unzip the library.

The steps to add the I2C LCD library are as follows:

•	Click to open the LIBRARY MANAGER.
•	Type i2c lcd in the search box.
•	Scroll down to find the library: LCD_I2C by Blackhack.
•	Click INSTALL to install the library.
•	Close the LIBRARY MANAGER.

At the time of writing this book the library version was 2.3.0.

To test that the library has been added successfully, enter the following lines in a newly
created program:

#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

void setup()
{
 lcd.begin();
}

void loop()
{
}

Mastering the Arduino Uno R4 - UK.indd 139Mastering the Arduino Uno R4 - UK.indd 139 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 140

•	Compile the program. There should be no errors.

The I2C LCD library supports many functions. Some most commonly used functions are:

begin():			 initialize LCD (This must be the first function call)
clear():			 clear the screen
home():			 home the cursor
noBlink():			 stop blinking cursor
blink():			 enable blinking cursor
noCursor():			 hide cursor
cursor():			 display cursor
scrollDisplayLeft():		 scroll display left
scrollDisplayRight():		 scroll display right
noBacklight():		 disable backlight
backlight():			 enable backlight
setCursor(column, row):	 set cursor position (0, 0) is the top left position
print():			 print data on LCD

The address of the I2C LCD must be defined at the beginning of the program. For example,
if the address is 0x27 and the LCD is 16 columns by 2 rows (i.e., 16 × 2), then:

LCD_I2C lcd(0x27, 16, 2);

Following the above statement, you can call the LCD functions by indexing them with the
keyword lcd. For example, to initialize the LCD:

lcd.begin(); 	 // initialize the lcd

 or, for example to enable the backlight, use:

 lcd.backlight();			 // Enable backlight

5.5 Project 1: Display text on the LCD
Description: In this project, you will display the text MY LCD at the top row (row 0),
starting from column position 5 of the LCD. The aim of this project is to show how the I2C
LCD can be connected and used in a program. The project also shows how to display text
on the LCD.

Block diagram: Figure 5.6 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 140Mastering the Arduino Uno R4 - UK.indd 140 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 141

Figure 5.6: Block diagram of the project.

Circuit diagram: The I2C LCD is connected to the SDA and SCL pins of the Arduino Uno
R4 Minima development board shown in Figure 5.7.

Figure 5.7: Circuit diagram of the project.

Program listing: Figure 5.8 shows the program listing (Program: LCD1). The LCD library
is initialized inside the setup() function and the backlight is turned ON. Inside the main
program loop, the text MY LCD is displayed at row 0, column 5 of the LCD. Notice that (0,
0) is the top-left corner (i.e. home) position of the cursor. Rows are numbered 0 and 1, and
columns 0 to 15.

//--
// DISPLAYING TEXT ON THE LCD
// ==========================
//
// In this project the text MY LCD is displayed at the top row,
// starting column 5 of the LCD
//
// Author: Dogan Ibrahim
// File : LCD1
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

Mastering the Arduino Uno R4 - UK.indd 141Mastering the Arduino Uno R4 - UK.indd 141 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 142

void setup()
{
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
}

void loop()
{
 lcd.setCursor(5, 0); // Row 0, Column 5
 lcd.print("MY LCD"); // Display text

 while(1); // Wait here forever
}

Figure 5.8: Program: LCD1.

Construction: Figure 5.9 shows the project where the I2C LCD pins are connected to the
development board using the supplied jumper wires.

Figure 5.9: Construction of the project.

5.6 Project 2: Scrolling text on the LCD
Description: In this project, you will initially display text SCROLL at the top row (row 0),
starting from column position 10 of the LCD. This text is then scrolled left by 10 cursor posi-
tions with 500 ms between each scroll. After a delay of 2 seconds, the same text is scrolled
right this time again by 10 positions. This process is repeated until stopped by the user.

The aim of this project is to show how text can be scrolled on the display.

The block diagram and circuit diagram of the project are in Figure 5.6 and Figure 5.7 re-
spectively.

Mastering the Arduino Uno R4 - UK.indd 142Mastering the Arduino Uno R4 - UK.indd 142 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 143

Program listing: Figure 5.10 shows the program listing (Program: LCDScroll). LCD li-
brary functions scrollDisplayLeft() and scrollDisplayRight() are used in the program.

//--
// SCROLL TEXT ON THE LCD
// ======================
//
// In this project the text SCROLL is scrolled left and right
//
// Author: Dogan Ibrahim
// File : LCDScroll
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

void setup()
{
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
}

void loop()
{
 lcd.setCursor(10, 0); // Row 0, Column 10
 lcd.print("SCROLL"); // Display text

 for(int i=0; i < 10; i++) // Scroll LEFT
 {
 lcd.scrollDisplayLeft();
 delay(500);
 }

 delay(2000); // Delay 2 seconds
 for(int i = 0; i < 10; i++) // Scroll RIGHT
 {
 lcd.scrollDisplayRight();
 delay(500);
 }

 delay(2000); // Delay 2 seconds
}

Figure 5.10: Program: LCDScroll.

Mastering the Arduino Uno R4 - UK.indd 143Mastering the Arduino Uno R4 - UK.indd 143 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 144

5.7 Project 3: Display custom characters on the LCD
Description: The LCD display has two types of memory, called CGROM and CGRAM.
CGROM memory is non-volatile and stores all permanent fonts used by the LCD and this
memory cannot be modified. CGRAM memory on the other hand is volatile and can be
modified by users to store user-defined characters.

In this project, you will generate an up-arrow character and then display it on your LCD.

Generating custom characters
Generating a custom character requires drawing the required character on a 5 × 8-pixel
grid and then calculating the corresponding bit pattern. There are several tools on the In-
ternet that can be used to create your own characters. In this project, the Custom Charac-
ter Generator at the following website is used to generate the up arrow:

	 https://lastminuteengineers.com/i2c-lcd-arduino-tutorial/

To generate your own character simply click on the grid. Figure 5.11 shows the character
generated by the author and the corresponding bit pattern.

Figure 5.11: Generated arrow character and its bit pattern.

You can now copy the generated code into your program and display the required character.

Program listing: Figure 5.12 shows the program listing (Program: LCDArrow). The gen-
erated array name is changed to UpArrow. Inside the setup() function, the character is
loaded into LCD memory with index 0. Inside the main program loop, the cursor is set to
row 0, column 5, and the loaded character is displayed by calling the LCD function write()
with index 0. Figure 5.13 shows the displayed character.

//--
// USING A CUSTOM CHARACTER
// ========================
//
// In this project an up arrow character is generated and displad on LCD
//
// Author: Dogan Ibrahim

Mastering the Arduino Uno R4 - UK.indd 144Mastering the Arduino Uno R4 - UK.indd 144 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 145

// File : LCDArrow
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

byte UpArrow[8] =
{
0b00000,
0b00100,
0b01110,
0b10101,
0b00100,
0b00100,
0b00100,
0b00100
};

void setup()
{
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
 lcd.createChar(0, UpArrow); // Create character with index 0
 lcd.clear(); // Clear display
}

void loop()
{
 lcd.setCursor(5, 0); // Row 0, Column 5
 lcd.write(0); // Display the character

 while(1); // Wait here forever
}

Figure 5.12: Program: LCDArrow.

Figure 5.13: Generated character displayed on the LCD.

5.8 Project 4: LCD based conveyor belt goods counter
Description: In this project, you count the number of items (e.g., bottles) passing on a
conveyor belt and display the result continuously on the LCD.

Mastering the Arduino Uno R4 - UK.indd 145Mastering the Arduino Uno R4 - UK.indd 145 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 146

Block diagram: Figure 5.14 shows the system. It is assumed that you wish to count the
number of bottles passing on a conveyor belt. A light beam is directed at a point to the
passing bottles. At the other side of the beam, a light-dependent resistor (LDR) is used to
detect when the light beam is interrupted. When this happens, a signal is sent to the de-
velopment board which then increments a counter and displays the total count on the LCD.

Figure 5.14: Block diagram of the project.

Light-dependent resistor
A light-dependent resistor is simply a resistor whose resistance changes with the applica-
tion of light to its surface (Figure 5.15). Although you will be using only one in this project,
there are 3 LDRs supplied with the kit. The resistance of an LDR increases as the light in-
tensity falling on the device is reduced (see Figure 5.15).

Figure 5.15: LDR and its typical characteristics.

LDRs are usually used in series with resistors in a circuit to form a resistive potential divider
circuit. The voltage at the output of the potential divider circuit is used to send a trigger
signal when the light intensity is below (or above) a set level. The trigger point can be de-
tected by an MCU using both analog and digital inputs.

Circuit diagram: Figure 5.16 shows the circuit diagram of the project. The supplied po-
tentiometer (about 5 kΩ) is used in series with the LDR. The potentiometer is adjusted
such that the output voltage goes over 3 V when the light falling on the LDR is reduced
by a passing bottle. The output of the potential divider circuit is fed to digital port 2 of the
development board.

Mastering the Arduino Uno R4 - UK.indd 146Mastering the Arduino Uno R4 - UK.indd 146 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 147

Figure 5.16: Circuit diagram of the project.

It was measured by the author that the resistance of the supplied LDR is about 0.5 kΩ in
light and increases to about 100 kΩ when in the dark. Assuming the potentiometer is set
to its middle arm point, i.e., 2.5 kΩ:

The voltage at the output when light falls on the LDR is:

Vo = 5 V × 0.5 kΩ / (2.5 kΩ + 0.5 kΩ) = 0.8 V which is at logic 0.

Similarly, the voltage at the output when it is dark is:

Vo = 5 V × 100 kΩ / (2.5 kΩ + 100 kΩ) = 4.87 V which is at logic 1.

You will set the potentiometer arm to just below its mid-point so that the output voltage is
even lower than 0.8 V when it is light. The exact point can easily be determined by exper-
imentation.

Program listing: Figure 5.17 shows the program listing (Program: LDRConveyor). At the
beginning of the program, the LCD library is defined and LDR is assigned to port 2. Inside
the setup() function, LDR is configured as an input, LCD is initialized and the heading TO-
TAL COUNT is sent to the top row of LCD. Inside the main program loop, the cursor is set
to (0, 1), and the program waits while there is light on the LDR (i.e., no bottle detected).
When a bottle is detected, the program comes out of the while statement and increments
the total count (variable Total). This variable is converted into a string (just in case it is
required to display text as well) and is displayed on the LCD. The program then waits until
the bottle passes in front of the LDR (i.e., while the output voltage Vo is 1). This cycle is
repeated after a small delay.

Mastering the Arduino Uno R4 - UK.indd 147Mastering the Arduino Uno R4 - UK.indd 147 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 148

//--
// CONVEYOR BELT GOODS COUNTER
// ===========================
//
// In this project an LDR is used togther with a potentiometer to count
// the number of goods (e.g. bottles) passing on a conveyor belt. The
// total count is displayed on the LCD
//
// Author: Dogan Ibrahim
// File : LDRConveyor
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

unsigned int Total = 0; // Total count
int LDR = 2; // LDR at pin 2

void setup()
{
 pinMode(LDR, INPUT); // LDR is input
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
 lcd.clear(); // Clear LCD
 lcd.setCursor(0, 0);
 lcd.print(" TOTAL COUNT"); // Display heading
 delay(100); // Wait a bit
}

void loop()
{
 lcd.setCursor(0, 1); // Row 1, Column 0
 while(digitalRead(LDR) == 0); // Wait if light (no bottle)
 Total++; // Increment Total (bottle detected)
 String Tot = String(Total); // Convert Total to string
 lcd.print(Tot); // Display total
 while(digitalRead(LDR) == 1); // Wait until bottle passes
 delay(100); // A bit of delay
}

Figure 5.17: Program: LDRConveyor.

Mastering the Arduino Uno R4 - UK.indd 148Mastering the Arduino Uno R4 - UK.indd 148 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 149

5.9 Project 5: LCD based accurate clock using timer interrupts
Description: This is an accurate clock project with an LCD display. The clock has 3 buttons
to set the time as follows:

SET:	 press to set the time or return back to clock mode.
HRS:	� press to set the hours. Hours is incremented by one every time it is

pressed.
MINS: 	� press to set the minutes. Minutes is incremented by one every time it is

pressed.

The clock is interrupt-based where a timer is used to generate interrupts every second. The
time is then set according to these interrupts. Button SET is external interrupt based, so
pressing this button at any time puts the clock into set mode where the hours and minutes
can be set. Seconds are set to 0 on exit from the SET mode. Pressing the button while in
this mode puts the clock back into operational mode.

Block diagram: Figure 5.18 shows the block diagram of the project.

Figure 5.18: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 5.19. Buttons SET, HRS, and
MINS are connected to port pins 2, 3 and 4, respectively (remember that external interrupt
is available on port pin 2) and are pulled up in the software. The LCD is connected as in the
previous LCD projects via the SDL and SDA pins.

Mastering the Arduino Uno R4 - UK.indd 149Mastering the Arduino Uno R4 - UK.indd 149 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 150

Figure 5.19: Circuit diagram of the project.

Program listing: Figure 5.20 shows the program listing (Program: CLOCK). At the be-
ginning of the program, buttons SET, HRS and MINS are assigned to port numbers 2, 3
and 4 respectively. Inside the setup() function, the buttons are configured as inputs and
are pulled up in the software by internal resistors. The LCD is initialized and the backlight is
turned ON. Then button SET is configured as an external interrupt pin on the falling edge
by calling function attachInterrupt. The external interrupt service routine SETbutton()
is called whenever button SET is pressed. Also, inside the setup() function, timer inter-
rupts are configured to generate interrupts at every second.

The timer interrupt service routine is the function named ISR_TIMER1_COMPA_vect().
Inside this routine, seconds are incremented by one. Then the minutes and hours are up-
dated accordingly. The code inside the timer-interrupt service routine runs only if the clock
is in operational mode (i.e. the SET button is not pressed).

Inside the main program loop, the time is displayed on the LCD in the format HH:MM:SS if
the clock is in operational mode.

Pressing the SET button puts the clock into set mode. In this mode HRS: and MINS: are
displayed on the second row of the LCD. Pressing the HRS button increments hours by one.
Similarly, pressing the MINS button increments minutes by one. If either of these buttons
are kept pressed, then their values are incremented continuously. When you are happy
with the hours and minutes settings, you should press the SET button to return to the clock
mode. The clock continues to run from the set hours and minutes with the seconds set to 0.

Mastering the Arduino Uno R4 - UK.indd 150Mastering the Arduino Uno R4 - UK.indd 150 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 151

//--
// ACCURATE CLOCK WITH LCD DISPLAY
// ===============================
//
// This is a clock project with LCD display. 1 second Timer interrupts
// are used for timing. Three buttons are used to set the clock as
// described in the text of the project
//
// Author: Dogan Ibrahim
// File : CLOCK
// Date : June, 2023
//--
#include <LCD_I2C.h>
#include "FspTimer.h"

FspTimer MyTimer;
LCD_I2C lcd(0x27, 16, 2);

uint8_t TimerType;
int8_t TimerIndex;

int SET = 2; // SET button at port 2
int HRS = 3; // HRS button at port 3
int MINS = 4; // MINS button at port 4

volatile int hours = 0, minutes = 0, seconds = 0;
bool SetTime = false; // Operating mode

void setup()
{
 pinMode(SET, INPUT_PULLUP); // SET is input
 pinMode(HRS, INPUT_PULLUP); // HRS is input
 pinMode(MINS, INPUT_PULLUP); // MINS is input
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
 lcd.clear(); // Clear LCD

//
// Configure SET button for external interrupts
//
 attachInterrupt(digitalPinToInterrupt(SET), SETbutton, FALLING);

//
// Configure Timer 1 for 1 second interrupts (1 Hz)
//
 StartTimer(1);

Mastering the Arduino Uno R4 - UK.indd 151Mastering the Arduino Uno R4 - UK.indd 151 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 152

}

//
// TIMER interrupt service routine (every second)
// Time is only updated if we are in operational mode
//
void ISR(timer_callback_args_t __attribute((unused)) *p_args)
{
 if(!SetTime) // If operational
 {
 seconds++; // Increment seconds
 if(seconds == 60)
 {
 seconds = 0;
 minutes++; // Increment minutes
 if(minutes == 60)
 {
 minutes = 0;
 hours++; // Increment hours
 if(hours == 24)
 {
 hours = 0;
 }
 }
 }
 }
}

//
// Get a GPT timer, set its mode, define callback ISR and start the timer
//
void StartTimer(float freq)
{
 TimerType = GPT_TIMER;
 TimerIndex = FspTimer::get_available_timer(TimerType);
 if (TimerIndex == 0)
 {
 FspTimer::force_use_of_pwm_reserved_timer();
 TimerIndex = FspTimer::get_available_timer(TimerType);
 }

 MyTimer.begin(TIMER_MODE_PERIODIC, TimerType, TimerIndex, freq, 0.0f, ISR);
 MyTimer.setup_overflow_irq();
 MyTimer.open();
 MyTimer.start();
}

Mastering the Arduino Uno R4 - UK.indd 152Mastering the Arduino Uno R4 - UK.indd 152 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 153

//
// External interrupt service routine via the SET pin
//
void SETbutton()
{
 SetTime = !SetTime; // Toggle SetTime

}

//
// Main program loop
//
void loop()
{
 if(!SetTime) // If in operational mode
 {
 lcd.setCursor(0, 1); // At second row
 lcd.print(" "); // Clear second row of LCD
 lcd.setCursor(0, 0); // To row 0, column 0
 if(hours < 10)lcd.print("0"); // Display leading 0
 lcd.print(hours); // Display hours
 lcd.print(":"); // Display :

 if(minutes < 10)lcd.print("0"); // Display leading 0
 lcd.print(minutes); // Display minutes
 lcd.print(":"); // Display :

 if(seconds < 10)lcd.print("0"); // Display leading 0
 lcd.print(seconds); // Display seconds
 lcd.print(" ");
 }
 else // In SET mode
 {
 lcd.setCursor(0, 1);
 lcd.print(" ");
 lcd.setCursor(0, 1);

 lcd.print("HRS:"); // Display HRS:
 lcd.print(hours);
 if(digitalRead(HRS) == 0)hours++; // Increment hours
 if(hours > 23)hours = 0;

 lcd.setCursor(9, 1);
 lcd.print("MINS:"); // Display MINS:
 lcd.print(minutes);

Mastering the Arduino Uno R4 - UK.indd 153Mastering the Arduino Uno R4 - UK.indd 153 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 154

 if(digitalRead(MINS) == 0)minutes++; // Increment minutes
 if(minutes > 59)minutes = 0;
 seconds = 0; // Set seconds to 0
 delay(250);
 }
}

Figure 5.20: Program: Clock.

Figure 5.21a shows the clock running in operational mode. When the SET button is pressed
the clock enters the set mode shown in Figure 5.21b. In this mode, pressing the HRS and
MINS buttons set the clock as required. Pressing the SET button again puts the clock back
into operational mode as in Figure 5.21a.

Figure 5.21: Operational mode and set mode.

5.10 Project 6: LCD dice
Description: This is an LCD-based dice project. When a button is pressed two random
numbers between 1 and 6 are displayed on the LCD. The numbers are displayed for 3 sec-
onds and after this time the display is cleared, ready to generate new numbers. Message
READY… is displayed when the program is ready.

Block diagram: Figure 5.22 shows the block diagram of the project.

Figure 5.22: Block diagram of the project.

Circuit diagram: Figure 5.23 shows the circuit diagram of the project. The button is con-
nected to port 2.

Mastering the Arduino Uno R4 - UK.indd 154Mastering the Arduino Uno R4 - UK.indd 154 13-09-2023 11:1313-09-2023 11:13

Chapter 5 ● Liquid Crystal Displays

● 155

Figure 5.23: Circuit diagram of the project.

Program listing: The program listing is shown in Figure 5.24 (Program:LCDDICE). But-
ton DICE is assigned to port 2 and is configured as an input. Random number generator
seed is loaded from analog input A0. Since this input is floating it is expected that every
time you call it may have a different value so that a different set of random numbers will
be generated. Two random numbers are generated between 1 and 6 and are displayed on
the LCD.

//--
// LCD DICE
// ========
//
// This is an LCD based dice. Two numbers are generated and displayed
// on LCD when the button is pressed
//
// Author: Dogan Ibrahim
// File : LCDDICE
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

int DICE = 2; // DICE button at port 2

void setup()
{
 pinMode(DICE, INPUT_PULLUP); // DICE is input
 lcd.begin(); // initialize the lcd
 lcd.backlight(); // Backlight ON
 lcd.clear(); // Clear LCD

Mastering the Arduino Uno R4 - UK.indd 155Mastering the Arduino Uno R4 - UK.indd 155 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 156

 randomSeed(analogRead(0)); // Random seed
}

void loop()
{
 lcd.setCursor(0, 0);
 lcd.print("READY...");
 while(digitalRead(DICE) == 1); // Wait until pressed
 int r1 = random(1, 7); // Generate 1 - 6
 int r2 = random(1, 7); // Another number
 lcd.clear(); // Clear LCD
 lcd.setCursor(0, 0);
 lcd.print(r1); // Display first number
 lcd.print(" ");
 lcd.print(r2); // Display second number
 delay(3000);
 lcd.clear();
}

Figure 5.24: Program: LCDDICE.

Mastering the Arduino Uno R4 - UK.indd 156Mastering the Arduino Uno R4 - UK.indd 156 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 157

Chapter 6 ● Sensors

6.1 Overview
In the last chapter, you explored the use of LC displays (LCDs) in projects. There are many
types of sensors supplied with the kit. In this chapter, you will learn how to use some of
these sensors in various interesting projects. Some other sensors and actuators will be
covered in later chapters of the book.

6.2 Project 1: Analog temperature sensor
Description: In this project, you will be using the LM35 analog temperature sensor chip
supplied with the kit. The project will measure the ambient temperature and then display it
on LCD, updating every 5 seconds.

Block diagram: Figure 6.1 shows the block diagram of the project which consists of the
LM35 sensor chip, the development board, and the I2C LCD.

Figure 6.1: Block diagram of the project.

Circuit diagram: LM35 is a 3-pin temperature sensor chip (Figure 6.2) with pins: +V,
GND, and OUT. The OUT pin is connected to analog input A0 of the Arduino Uno R4 devel-
opment board. The analog-to-digital converter (ADC) on the processor is by default 10-
bits wide, having 1024 quantization levels. Therefore, with a +5 V reference voltage, each
quantization level corresponds to 4.88 mV. For example, 4.88 mV analog input corresponds
to 10-bit digital data: 00 0000 0001, similarly, 9.76 mV corresponds to 00 0000 0010, and
so on. The reading of the ADC must be multiplied by 1023/5000 to give the actual physical
voltage in millivolts present at the analog input.

Figure 6.2: LM35 temperature sensor chip.

Mastering the Arduino Uno R4 - UK.indd 157Mastering the Arduino Uno R4 - UK.indd 157 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 158

The LM35 temperature sensor has the following basic specifications:

•	Calibrated in degrees celsius
•	Linear 10 mV/ºC output
•	0.5 ºC accuracy
•	–55 ºC to +125 ºC operation
•	Operation from +4 V to +30 V
•	Less than 60 μA current drain
•	Low self-heating (0.08 ºC in still air)

The output voltage of LM35 is linearly proportional to the measured temperature and is
given by:

	 T = Vo / 10

Where T is the measured temperature in degrees C, and Vo is the sensor output voltage
in millivolts. For example, 250 mV output corresponds to 25 ºC; 300 mV corresponds to
30 ºC, and so on. For simplicity, to find the measured temperature, divide the analog volt-
age read in millivolts by 10.

Figure 6.3 shows the circuit diagram of the project.

Figure 6.3: Circuit diagram of the project.

Program listing: The program listing is shown in Figure 6.4 (Program: LM35). At the be-
ginning of the program, the I2C LCD header file is included and LM35 is assigned to analog
input port A0 of the development board. The temperature is read inside the main program
loop, converted into degrees C and displayed on the LCD every 2 seconds. Notice that you
might get fluctuation values. It is recommended by the manufacturers to use an RC filter
circuit at the output of the LM35 for stable operation (see manufacturers data sheet).

Mastering the Arduino Uno R4 - UK.indd 158Mastering the Arduino Uno R4 - UK.indd 158 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 159

//--
// LM35 TEMPERATURE DISPLAY
// ========================
//
// In this project the LM35 temperature sensor chip is used to measure
// and display the ambient temperature on the LCD
//
// Author: Dogan Ibrahim
// File : LM35
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

#define LM35 A0 // LM35 at port A0
int raw;

void setup()
{
 lcd.begin(); // Initialize LCD
 lcd.backlight(); // BAcklight ON
}

void loop()
{
 raw = analogRead(LM35); // Read temperature
 float mV = 5000.0 * raw / 1023.0; // in mV
 float Temperature = mV / 10.0; // True temperature
 lcd.setCursor(0, 0);
 lcd.clear(); // Clear LCD
 lcd.print("T = "); // Display T =
 lcd.print(Temperature); // Display temperature
 lcd.print(" C"); // Display C
 delay(2000); // Wait 2 seconds
}

Figure 6.4: Program: LM35.

Note: The default ADC resolution of the Arduino Uno R4 processor is 10 bits. The processor
supports resolutions up to 14 bits for much more accuracy. You can change the resolution
to 12 bits or to 14 bits. To change to 14 bits, enter the following statement in your setup()
function:

	 analogReadResolution(14);

Mastering the Arduino Uno R4 - UK.indd 159Mastering the Arduino Uno R4 - UK.indd 159 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 160

6.3 Project 2: Voltmeter
Description: This is a voltmeter project. The voltage to be measured is applied to an
analog input and its value in millivolts is displayed on the LCD. The maximum allowable
input voltage is +5 V. It is shown later in the project how to use a resistive potential divider
circuit to extend the range of the voltmeter.

Circuit diagram: The voltage to be measured is applied to analog input A0 shown in Fig-
ure 6.5. The I2C LCD is connected as in the previous project.

Figure 6.5: Circuit diagram of the project.

Program listing: Figure 6.6 shows the program listing (Program: Voltmeter). The pro-
gram is very simple. The input voltage is read and displayed in millivolts on the LCD.

//--
// VOLTMETER
// =========
//
// This is a voltmeter project which displays te input voltage in mV
//
// Author: Dogan Ibrahim
// File : Voltmeter
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

#define voltmeter A0 // Input at port A0
int raw;

void setup()
{
 lcd.begin(); // Initialize LCD
 lcd.backlight(); // Backlight ON
}

Mastering the Arduino Uno R4 - UK.indd 160Mastering the Arduino Uno R4 - UK.indd 160 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 161

void loop()
{
 raw = analogRead(voltmeter); // Read temperature
 float mV = 5000.0 * raw / 1023.0; // in mV
 lcd.setCursor(0, 0);
 lcd.clear(); // Clear LCD
 lcd.print("V = "); // Display V =
 lcd.print(mV); // Display voltage
 lcd.print(" mV"); // Display C
 delay(1000); // Wait 1 second
}

Figure 6.6: Program: Voltmeter.

Extending the voltmeter range
The useful range of your voltmeter can easily be extended by using resistive potential di-
vider circuits. For example, the circuit shown in Figure 6.7 attenuates the input voltage by
a factor of 4 so that input voltages up to 20 V can be measured. You should of course have
to multiply the readings by 4.

Figure 6.7: Resistive potential divider circuit.

6.4 Project 3: On/off temperature controller
Description: Temperature control is very important in many industrial, commercial, and
domestic applications. The success of many chemical reactions depends on applying the
correct temperature. Most temperature control systems are feedback based, where the
temperature of the place whose temperature is to be controlled is measured and compared
with the desired temperature. Then, an algorithm is used to achieve the desired tempera-
ture. Most professional temperature control systems are based on PID (Proportional+Inte-
gral+Derivative) type of feedback control algorithms. Another simplified type of control is
the ON-OFF type of control. Here, the temperature is measured (RoomTemp) and com-
pared with the desired temperature (SetTemp). If the measured temperature is lower than
the desired one, then a heater is turned ON to increase the temperature. If on the other
hand, the measured temperature is higher than the desired temperature, then the heater
is turned OFF and additionally, a fan can be used to assist to lower the temperature. In ON-
OFF type of control applications, relays are usually used to activate/deactivate the heater
supply voltage. The main disadvantage of the ON-OFF type of temperature control is that it
is not possible to achieve very accurate temperature control. Also, the relay can wear out
as it has to operate many times, unless a semiconductor type of relay is used.

Mastering the Arduino Uno R4 - UK.indd 161Mastering the Arduino Uno R4 - UK.indd 161 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 162

In this project, you will be implementing an ON-OFF type of control algorithm to control the
temperature of a room. In this project, the SetTEmp is fixed in the program for simplic-
ity. A red LED is connected to the development board to indicate when the relay (i.e. the
heater) is ON.

Block diagram: Figure 6.8 shows the block diagram of the project. Note that the LM35,
Relay, and I2C LCD are all included in the kit. The heater is not included in the kit.

Figure 6.8: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 6.9. The interface
between the development board and the external components is as follows (ground and
voltage supply pins are not shown):

External component		 Development board port
LM35				 A0
RELAY (Pin S)			 2
LED				 3
LCD				 SDA, SCL

Figure 6.9: Circuit diagram of the project.

Note that some cheap LM35 chips are not reliable and give fluctuating values. You may also
have to use an RC filter circuit at the output of LM35 to increase reliability.

Mastering the Arduino Uno R4 - UK.indd 162Mastering the Arduino Uno R4 - UK.indd 162 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 163

Program listing: Figure 6.10 shows the program listing (Program: ONOFF). At the be-
ginning of the program, SetTemp is set to 20.0 Degrees, and the LED and RELAY are as-
signed to port numbers 3 and 2 respectively. Inside the setup() function, both the RELAY
and LED are configured as outputs and are deactivated. Inside the main program loop, the
room temperature is read and compared to the desired temperature. If the room temper-
ature is lower than the desired temperature, then both the LED and RELAY are activated,
otherwise they are deactivated. The program checks the temperature every 10 seconds.
The SetTemp and RoomTemp are displayed on the LCD shown in Figure 6.11.

//--
// ONOFF TEMPERATURE CONTROL
// =========================
//
// This is an ON-OFF temperature controller project. The ambient temperature
// is read and compared to the desired set value. If it is less than the set
// value then the relay and LED are activated, otherwise they are deactivated
//
// Author: Dogan Ibrahim
// File : ONOFF
// Date : June, 2023
//--
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

float SetTemp = 20.0; // Desired temperature
#define LM35 A0 // LM35 at port A0
int raw;
int LED = 3; // LED at port 3
int RELAY = 2; // RELAY at port 2

void setup()
{
 pinMode(LED, OUTPUT); // LED is output
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(LED, LOW); // LED OFF at beginning
 digitalWrite(RELAY, LOW); // RELAY OFF at beginning
 lcd.begin(); // Initialize LCD
 lcd.backlight(); // BAcklight ON
}

void loop()
{
 raw = analogRead(LM35); // Read temperature
 float mV = 5000.0 * raw / 1023.0; // in mV
 float RoomTemp = mV / 10.0; // Room temperature

Mastering the Arduino Uno R4 - UK.indd 163Mastering the Arduino Uno R4 - UK.indd 163 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 164

 lcd.clear(); // Clear LCD
 lcd.setCursor(0, 0);
 lcd.print(" SetTemp = "); // Display SetTemp =
 lcd.print(SetTemp); // Display SetTEmp
 lcd.setCursor(0, 1);
 lcd.print("RoomTemp = "); // Display RoomTemp =
 lcd.print(RoomTemp); // Display RoomTemp

 if(SetTemp > RoomTemp) // If cold
 {
 digitalWrite(LED, HIGH); // LED ON
 digitalWrite(RELAY, HIGH); // RELAY ON

 }
 else
 {
 digitalWrite(LED, LOW); // LED OFF
 digitalWrite(RELAY, LOW); // RELAY OFF
 }
 delay(10000); // Wait 10 seconds
}

Figure 6.10: Program: ONOFF.

Figure 6.11: The LCD display.

Suggestion: In Figure 6.10, the SetTemp is a single value. As a result of this, the relay
may have to operate many times as the temperature fluctuates around this value. In prac-
tical applications, it is better to choose two values close to each other and then keep the
temperature between these two values.

6.5 Project 4: Darkness reminder – using a light-dependent resistor
(LDR)
Description: The LDR was introduced in Project 4 (Section 5.8) when you developed the
conveyor belt goods counter project. In that project, LDR was used with one of the digital
inputs of the development board.

The analog output voltage of the LDR can be used to calculate the level of brightness in a
room. Alternatively, it can be used as an ON-OFF switch to detect when it becomes dark
(i.e. dark sensor). The LDR can be used for example with a relay and motor to close the
curtains at night time, or to switch ON the outside lights at night time, and so on.

Mastering the Arduino Uno R4 - UK.indd 164Mastering the Arduino Uno R4 - UK.indd 164 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 165

In this project, LDR is used to detect when it becomes dark. The relay supplied with the
kit is activated when darkness is detected, and also, the on-board LED is turned ON. The
contacts of the relay can be connected to various devices which need to be activated when
it becomes dark.

Block diagram: Figure 6.12 shows the block diagram of the project.

Figure 6.12: Block diagram of the project.

Circuit diagram: As described in Chapter 5, LDRs are simple resistors whose resistance
decreases with increasing incident light. These devices are usually used in light-level con-
trol applications. Figure 6.13 shows the circuit diagram of the project. One leg of the LDR
is connected to ground (0V). The other leg is connected to +5 V through a potentiometer.
The junction of the LDR with the potentiometer is connected to analog input A0 of the de-
velopment board. Notice that, just like resistors, LDRs have no polarities.

Figure 6.13: Circuit diagram of the project.

Program listing: Figure 6.14 shows the program listing (Program: darkness). At the
beginning of the program, LDR is assigned to analog port A0. The relay is assigned to port
2 and is configured as output and is deactivated at the beginning of the program. Also, the
on-board LED at port 13 is turned OFF. Inside the program loop, the output of the LDR is
read and stored in integer variable ldr. In this project, darkness is assumed if ldr is greater
than 800 (you will have to experiment by displaying the values of variable ldr using the
Serial Monitor at different light levels. Note the value of variable ldr when there is no light

Mastering the Arduino Uno R4 - UK.indd 165Mastering the Arduino Uno R4 - UK.indd 165 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 166

falling on the LDR) and when this happens both the relay and the on-board LED are turned
ON to indicate darkness. You can adjust the dark level detection point by varying the po-
tentiometer,

//--
// DARKNESS REMINDER
// =================
//
// In this project a LDR is usd with a relay. The relay and the on-board
// LED are turned ON when dark (i.e. when the light falling on the LDR
// is reduced)
//
// Author: Dogan Ibrahim
// File : darkness
// Date : June, 2023
//--
#define LDR A0 // LDR at port A0
int ldr;
int LED = 13; // On-board LED at 13
int RELAY = 2; // RELAY at port 2

void setup()
{
 pinMode(LED, OUTPUT); // LED is output
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(LED, LOW); // LED OFF at beginning
 digitalWrite(RELAY, LOW); // RELAY OFF at beginning
}

void loop()
{
 ldr = analogRead(LDR); // Read temperature
 if(ldr > 800) // If dark detected
 {
 digitalWrite(LED, HIGH); // LED ON
 digitalWrite(RELAY, HIGH); // RELAY ON
 }
 else
 {
 digitalWrite(LED, LOW); // LED OFF
 digitalWrite(RELAY, LOW); // RELAY OFF
 }
}

Figure 6.14: Program: darkness.

Mastering the Arduino Uno R4 - UK.indd 166Mastering the Arduino Uno R4 - UK.indd 166 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 167

6.6 Project 5: Tilt detection
Description: There are applications where you may want to know if an object is tilted. In
this project, you will be using the supplied vibration tilt sensor device and activate the re-
lay when the device is tilted. In normal applications the tilt sensor is attached to an object
where you wish to detect when the object is tilted.

Vibration tilt sensor
Two SW-520D-type vibration tilt sensor devices (Figure 6.15) are supplied with the kit. This
sensor consists of two metal balls that act as a switch. When the device is horizontal and
the sensor angle is less than 10º, the switch is in the open state. When the device is tilted
by more than 10º, the switch is closed.

Figure 6.15: SW-520D vibration tilt sensor.

Block diagram: Figure 6.16 shows the block diagram of the project.

Figure 6.16: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 6.17. One leg of the sensor is
connected to GND, while the other leg is connected to port 2. A 10-kΩ pull-up resistor is
used to +5 V. The relay is connected to port 3.

Mastering the Arduino Uno R4 - UK.indd 167Mastering the Arduino Uno R4 - UK.indd 167 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 168

Figure 6.17: Circuit diagram of the project.

Program listing: Figure 6.18 shows the program listing (Program: Tilt). At the beginning
of the program, TILT and RELAY are assigned to ports 2 and 3 respectively. TILT is con-
figured as an input and RELAY as an output. Inside the main program loop, the state of the
sensor is checked. If the sensor output is LOW (i.e., sensor is tilted and contacts are closed)
then the relay is activated, otherwise, the relay is deactivated.

//--
// TILT DETECTOR
// =============
//
// This is a tilt detector project. A tilt sensor is attache dto an object.
// If the object is tilted then the relay is activated
//
// Author: Dogan Ibrahim
// File : Tilt
// Date : June, 2023
//--
int TILT = 2; // Tilt at port 2
int RELAY = 3; // RELAY at port 3

void setup()
{
 pinMode(TILT, INPUT); // TILT is input
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(RELAY, LOW); // RELAY OFF at beginning
}

void loop()
{
 int Sensor = digitalRead(TILT); // Read the sensor state
 if(Sensor == LOW) // Sensor tilted

Mastering the Arduino Uno R4 - UK.indd 168Mastering the Arduino Uno R4 - UK.indd 168 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 169

 digitalWrite(RELAY, HIGH); // Activate relay
 else
 digitalWrite(RELAY, LOW); // Deactivate relay
}

Figure 6.18: Program: Tilt.

6.7 Water level sensor
The water level sensor (Figure 6.19) is used to detect the presence of water, for example,
the level of water in a tank, the level of water in a pool, to detect rainfall, to detect water
leakage, and so on. The sensor has a series of ten exposed copper traces, five of which
are power traces and five are sense traces. These traces are interlaced so that there is one
sense trace between every two power traces. The traces are bridged by water when sub-
merged in water or when water is present on the sensor. A small LED is lit on the sensor
when power is applied.

Figure 6.19: Water level sensor.

The sensor has 3 pins: - (GND), + (power supply), and S (analog output). the basic spec-
ifications of the sensor are:

•	Operating voltage: 3.3 V to 5 V
•	Current: less than 20 mA

One problem with the water level sensors is that the lifetime of these sensors is shortened
when the sensor is exposed to a moist environment, especially when power is applied to
the sensor. One way around this problem is not to power the sensor permanently, but to
power it only when reading will be taken. This can be done if the sensor is powered from a
digital output port of the development board since the output ports can supply the required
20 mA.

The output of the water level sensor is 0 V when it is not exposed to water. The output volt-
age increases as the sensor is submerged in water. The higher the water level, the higher
will be the output voltage. Therefore, by measuring the output voltage of the sensor you
can determine the level of water for example in a tank. Notice that the output voltage de-
pends on the amount of minerals present in the water. It is therefore necessary to calibrate
the sensor for the type of water you are using. This is explained in the next project.

6.7.1 Project 6: Displaying water level
Description: In this project, you will be using the water level sensor supplied with the
kit. The sensor is connected to analog input A0 of the development board. The water level
readings are displayed on the Serial Monitor when the sensor is inserted into a container

Mastering the Arduino Uno R4 - UK.indd 169Mastering the Arduino Uno R4 - UK.indd 169 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 170

with water as the level of water is increased (Figure 6.20). By knowing the relationship
between the water level and the ADC output, you can use the sensor in water level control
applications.

Figure 6.20: Measuring water level.

Circuit diagram: Figure 6.21 shows the circuit diagram of the project. The sensor is pow-
ered from pin 2 and its output (pin S) is connected to analog input A0 of the development
board.

Figure 6.21: Circuit diagram of the project.

Program listing: Figure 6.22 shows the program listing (Program: Waterlevel). At the
beginning of the program, pin 2 is assigned to POWER and is configured as output. This
pin provides power to the sensor. The output of the sensor is connected to analog input
A0 of the development board. Serial Monitor is used to display the values read by the ADC
as more water is added to the cup. As shown in Table 6.1, a list is made showing the ADC
output against the level of liquid in cm. This table can be used in other water sensor ap-
plications as long as the conditions are the same (e.g. same cup), e.g. for controlling the
level of water in a tank.

Mastering the Arduino Uno R4 - UK.indd 170Mastering the Arduino Uno R4 - UK.indd 170 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 171

Water level (cm) ADC output

0 0

1 450

2 500

2.5 520

3 530

3.5 540

4 550

Table 6.1: Water level vs. ADC output.

//--
// WATER LEVEL SENSOR
// ==================
//
// In this project a water level sensor is used. The program measures
// the water leproject measures the water level. Serial Monitor is used
// to tabulate the results
//
// Author: Dogan Ibrahim
// File : Waterlevel
// Date : June, 2023
//--
int POWER = 2; // Power at port 2
#define Sensor A0

void setup()
{
 pinMode(POWER, OUTPUT); // POWER is output
 Serial.begin(9600); // Serial monitor
 delay(5000);
}

void loop()
{
 digitalWrite(POWER, HIGH); // Apply power to sensor
 int raw = analogRead(Sensor); // Read sensor value
 Serial.println(raw); // Display ADC value
 delay(2000); // One second delay
}

Figure 6.22: Program: Waterlevel.

Mastering the Arduino Uno R4 - UK.indd 171Mastering the Arduino Uno R4 - UK.indd 171 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 172

6.7.2 Project 7: Water level controller
Description: In this project, the aim is to control the amount of water in a tank between
two levels. It is assumed that Table 6.1 is valid in this project. i.e., the same type of water
and the same tank are used as in the previous project.

Block diagram: Figure 6.23 shows the block diagram of the project. A relay-driven pump
draws water from a reservoir and fills a tank. A water level sensor detects the amount of
water in the tank. The pump (i.e. relay) is operated if the water level is below LOWL and is
stopped when the water level in the tank reaches HIGHL. In this project, LOWL and HIGHL
are set as 450 and 540 respectively (i.e., the water height should always be between 1 cm
and 3.5 cm).

Figure 6.23: Block diagram of the project.

Circuit diagram: Figure 6.24 shows the circuit diagram. The sensor is powered from port
2 and sensor output is connected to analog input A0 as in the previous project. The relay is
connected to port 3 of the development board.

Figure 6.24: Circuit diagram of the project.

Program listing: Figure 6.25 shows the program listing (Program: WaterControl). In-
side the setup() function, POWER and RELAY pins are configured as outputs and the re-
lay is deactivated. Inside the main program loop, the water level is measured. If it is below
LOWL then the relay is activated until the water reaches HIGHL. At this point, the relay is
deactivated. Power is also removed from the sensor for 5 seconds where the measurement
starts again.

Mastering the Arduino Uno R4 - UK.indd 172Mastering the Arduino Uno R4 - UK.indd 172 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 173

//--
// WATER LEVEL CONTROL
// ===================
//
// In this project a water level sensor is used. The program controls the
// amount of water in a tank between two levels LOWL and HIGHL. A relay
// is controlled to keep the water between these levels
//
// Author: Dogan Ibrahim
// File : WaterControl
// Date : June, 2023
//--
int POWER = 2; // Power at port 2
int RELAY = 3; // RELAY at port 3
#define Sensor A0 // Sensor output
int LOWL = 450; // Low level
int HIGHL = 540; // High level

void setup()
{
 pinMode(POWER, OUTPUT); // POWER is output
 pinMode(RELAY, OUTPUT);
 digitalWrite(RELAY, LOW);
}

void loop()
{
 digitalWrite(POWER, HIGH); // Apply power to sensor
 int raw = analogRead(Sensor); // Read sensor value
 if(raw < LOWL)
 {
 digitalWrite(RELAY, HIGH);
 while(raw < HIGHL)
 {
 raw = analogRead(Sensor); // Read sensor value
 }
 digitalWrite(RELAY, LOW);
 }
 digitalWrite(POWER, LOW); // Remove power
 delay(5000); // Five seconds delay
}

Figure 6.25: Program: WaterControl.

Mastering the Arduino Uno R4 - UK.indd 173Mastering the Arduino Uno R4 - UK.indd 173 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 174

6.7.3 Project 8: Water flooding detector with buzzer
Description: In this project, the water sensor is placed near a water supply to detect
water leakage or flooding. If water leakage has been detected, then a buzzer sounds as a
warning. The buzzer could be replaced with a relay so that other more powerful warning
devices can be activated.

Block diagram: Figure 6.26 shows the block diagram of the project.

Figure 6.26: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 6.27. The water sensor is connect-
ed to the development board as in the previous project. The buzzer is connected to port 3.

Figure 6.27: Circuit diagram of the project.

Program listing: Figure 6.28 shows the program listing (Program: Flooding). The trigger
point is set to 500 in this project. Notice that once flooding is detected the buzzer keeps
sounding until the processor is reset.

//--
// FLOODING WARNING
// ================
//
// In this project a water level sensor is used. The program detects
// water leakage/flooding and sounds the buzzer. The system must be
// reset to stop the buzzer sounding
//

Mastering the Arduino Uno R4 - UK.indd 174Mastering the Arduino Uno R4 - UK.indd 174 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 175

// Author: Dogan Ibrahim
// File : Flooding
// Date : June, 2023
//--
int POWER = 2; // Power at port 2
int BUZZER = 3; // RELAY at port 3
#define Sensor A0 // Sensor output
int Trigger = 500; // Trigger level

void setup()
{
 pinMode(POWER, OUTPUT); // POWER is output
 pinMode(BUZZER, OUTPUT); // Buzzer is output
 digitalWrite(BUZZER, LOW); // Buzzer OFF
 digitalWrite(POWER, HIGH); // Apply power to sensor
}

void loop()
{
 int raw = analogRead(Sensor); // Read sensor value
 if(raw > Trigger)
 {
 digitalWrite(BUZZER, HIGH); // Buzzer ON
 while(1); // Wait here forever
 }
}

Figure 6.28: Program: Flooding.

6.8 Project 9: Sound detection sensor — control the relay by clapping
hands
Description: This project uses the sound detection sensor to toggle the state of a relay
when you clap your hands close to the sensor.

The sound detection sensor
This is a small module (Figure 6.29) incorporating a sensitive capacitive microphone for
detecting sound and an amplifier. The output of the module can be analog or digital. The
sound sensitivity of the module is adjusted by the on-board potentiometer. The analog
output voltage changes with the intensity of sound received by the microphone. You can
connect this output to an analog input pin and process the output voltage. In this project,
you will be using the digital output. The digital output goes LOW when sound with enough
loudness is detected by the microphone.

Mastering the Arduino Uno R4 - UK.indd 175Mastering the Arduino Uno R4 - UK.indd 175 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 176

The module has the following pins:

A0	 analog output
G	 GND
+	 power supply
D0	 digital output

Figure 6.29: Sound detection sensor.

Block diagram: Figure 6.30 shows the block diagram of the project.

Figure 6.30: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 6.31. Digital output of the sensor
module is connected to port 2 and the relay is connected to port 3.

Figure 6.31: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 176Mastering the Arduino Uno R4 - UK.indd 176 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 177

Program listing: Figure 6.32 shows the program listing (Program: Clap). The sensor
output is assigned to port 2 and RELAY to port 3. The sensor is the input and RELAY is the
output. Inside the main program, the output of the sensor is checked. When the sensor is
activated by clapping next to the microphone, its output goes LOW. This is detected by the
program which changes the state of the relay. You will have to adjust the sensitivity via the
on-board potentiometer and LED.

//--
// SOUND CONTROLLED RELAY
// ======================
//
// In this project the sound sensor module is used together with the
// relay. Clapping hands near the sensor toggles the state of the relay
//
// Author: Dogan Ibrahim
// File : Clap
// Date : June, 2023
//--
int D0pin = 2; // Sensor output port 2
int RELAY = 3; // RELAY at port 3
bool RelayState = false;

void setup()
{
 pinMode(D0pin, INPUT); // D0 pin is input
 pinMode(RELAY, OUTPUT); // Relay is output
 digitalWrite(RELAY, LOW); // Relay OFF
}

void loop()
{
 while(digitalRead(D0pin) == 1); // Wait for clap
 RelayState = !RelayState; // Change state
 if(RelayState)
 digitalWrite(RELAY, HIGH); // Relay ON
 else
 digitalWrite(RELAY, LOW); // Relay OFF
}

Figure 6.32: Program: Clap.

6.9 Project 10: Flame sensor — fire detection with relay output
Description: In this project, the supplied flame sensor is used to detect fire and then ac-
tivate the relay. The relay for example can be connected to a sound device to warn of fire.

Mastering the Arduino Uno R4 - UK.indd 177Mastering the Arduino Uno R4 - UK.indd 177 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 178

The flame sensor
The supplied flame sensor (Figure 6.33) is basically a YG-1006 type 2-pin photosensitive
transistor, sensitive to Infra-Red light wavelengths between 760 nm to 1100 nm which is
the wavelength of flame. The device has two pins: Emitter (long pin) and Collector (short
pin). The device is normally used in series with a 10-kΩ resistor, where the Collector is
connected to +5 V and Emitter to GND through the resistor. Output is taken from the emit-
ter-resistor junction. The phototransistor starts to conduct when it gets IR light from the
flame. A comparator can be used to convert the output to a digital signal.

Figure 6.33: Supplied flame sensor.

Block diagram: Figure 6.34 shows the block diagram of the project.

Figure 6.34: Block diagram of the project.

Circuit diagram: Figure 6.35 shows the circuit diagram. The relay is connected to port 3
and output from the flame sensor is connected to analog input A0.

Mastering the Arduino Uno R4 - UK.indd 178Mastering the Arduino Uno R4 - UK.indd 178 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 179

Figure 6.35: Circuit diagram of the project.

Program listing: Before using the project, you should run the Serial Monitor and display
the ADC data output from the sensor with and without flame near the sensor. The author
noticed that without any flame the sensor output was about 30. When there was flame from
a match about a couple of feet away from the sensor, the reading went to over 500. In this
project, the Trigger point is taken as 200.

Figure 6.36 shows the program listing (Program: Flame). RELAY is assigned to port 3 and
configured as output. Inside the main program loop, the output of the flame sensor is read
continuously and if it is above the Trigger value then it is assumed that fire has occurred
and the relay is activated. The only way to deactivate the relay is to reset the processor.

//--
// SOUND CONTROLLED RELAY
// ======================
//
// In this project the sound sensor module is used together with the
// relay. Clapping hands near the sensor toggles the state of the relay
//
// Author: Dogan Ibrahim
// File : Flame
// Date : June, 2023
//--
#define FLAME A0
int RELAY = 3; // RELAY at port 3
int Trigger = 200;

void setup()
{
 pinMode(RELAY, OUTPUT); // Relay is output
 digitalWrite(RELAY, LOW); // Relay OFF
}

void loop()

Mastering the Arduino Uno R4 - UK.indd 179Mastering the Arduino Uno R4 - UK.indd 179 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 180

{
 int raw = analogRead(FLAME); // Read flame sensor
 if(raw > Trigger) // If flame detected
 {
 digitalWrite(RELAY, HIGH); // Relay ON
 while(1); // Wait here forever
 }
}

Figure 6.36: Program: Flame.

6.10 Project 11: Temperature and humidity display
Description: In this project, the DHT11 temperature and relative humidity sensor chip is
used to get the ambient temperature and the relative humidity. The readings are displayed
every 5 seconds on the LCD. The aim of this project is to show how the popular DHT11
relative humidity and temperature sensor chip can be used in projects.

Block diagram: Figure 6.37 shows the block diagram of the project.

Figure 6.37: Block diagram of the project.

Circuit Diagram: The standard DHT11 is a 4-pin digital output device (only 3 pins are
used) shown in Figure 6.38, having pins +V, GND, and Data. The Data pin is internally
pulled up to +V through a 10-kΩ resistor. The chip uses a capacitive humidity sensor and
a thermistor to measure the ambient temperature. Data output is available from the chip
around every few seconds. The basic features of DHT11 are:

•	3 to 5 V operation
•	2.5 mA current consumption (during a conversion)
•	Temperature reading in the range 0-50 ºC with an accuracy of ±2 ºC
•	Humidity reading in the range of 20-80% with 5% accuracy
•	Breadboard compatible with 0.1-inch pin spacings

Mastering the Arduino Uno R4 - UK.indd 180Mastering the Arduino Uno R4 - UK.indd 180 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 181

Figure 6.38: The DHT11 module.

Figure 6.39 shows the circuit diagram of the project. Here, the Data output of the DHT11 is
connected to pin 2 of the development board.

Figure 6.39: Circuit diagram of the project.

Program listing: It is necessary to install the DHT sensor library before the sensor chip can
be used. The steps to install this library are given below (Figure 6.40):

•	Start the IDE.
•	Click to open the LIBRARY MANAGER.
•	Type dht sensor in the search box and scroll down.
•	Click INSTALL to install the DHT sensor library by Adafruit.
•	Exit from the LIBRARY MANAGER.

At the time of writing this book the version of the library was 1.4.4

Mastering the Arduino Uno R4 - UK.indd 181Mastering the Arduino Uno R4 - UK.indd 181 13-09-2023 11:1313-09-2023 11:13

.

Mastering the Arduino Uno R4

● 182

Figure 6.40: Install the Adafruit DHT library.

Program listing: Figure 6.41 shows the program listing (DHT11monitor). At the begin-
ning of the program, the DHT header is included and the variables used in the program are
declared. DHT11 is started in the setup() function. Function ReadDHT11() reads the
temperature and humidity data from the sensor. You should notice that sometimes DHT11
does not return any data. This is detected by checking whether the returned data is not a
number (using the keyword isnan). This function returns 1 to the main program is the data
is read successfully, otherwise, 0 is returned. The main program displays the temperature
and humidity on the LCD every 5 seconds. If the data is not read correctly, then the pro-
gram attempts to read again after 5 seconds of delay.

//--
// DHT11 TEMPERATURE AND HUMIDITY DISPLAY
// ======================================
//
// In this project a DHT11 temperature and humidity sensor chip is used.
// The data read is displayed on the LCD every 5 seconds
//
// Author: Dogan Ibrahim
// File : DHT11monitor
// Date : June, 2023
//--
#include "DHT.h"
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

float hum, temp;
#define Sensor 2 // DHT11 Sensor at pin 2
#define DHTTYPE DHT11 // DHT11 is used
DHT dht(Sensor, DHTTYPE);

void setup()
{
 lcd.begin(); // initialize the lcd

Mastering the Arduino Uno R4 - UK.indd 182Mastering the Arduino Uno R4 - UK.indd 182 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 183

 lcd.backlight(); // Backlight ON
 dht.begin();
}

//
// Read the temperature and humidity. DHT11 sometimes fails to return
// data. Catch this condition and return correct status to teh calling
// program. Returning 1 is success, 0 is error
//
int ReadDHT11()
{
 hum = dht.readHumidity(); // Read humidity
 temp = dht.readTemperature(); // Read temperature in C

 // Check if any read failed and return status to caller to try again
 if (isnan(hum) || isnan(temp))
 {
 return 0;
 }
 else
 return 1;
}

void loop()
{
 delay(2000); // DHT11 is a slow device
 if(ReadDHT11() == 1) // If successful read
 {
 lcd.clear(); // Clear LCD
 lcd.setCursor(0, 0); // Cursor at top
 lcd.print("T="); // Display T=
 lcd.print(temp); // Display temperature
 lcd.print(" C"); // Display C
 lcd.setCursor(0, 1); // Cursor at bottom
 lcd.print("H="); // Display H=
 lcd.print(hum); // Display humidity
 lcd.print(" %"); // Display %
 delay(5000); // Wait 5 seconds
 }
 else // Failed to read
 delay(3000); // Wait 3 seconds
}

Figure 6.41: Program: DHT11monitor.

Mastering the Arduino Uno R4 - UK.indd 183Mastering the Arduino Uno R4 - UK.indd 183 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 184

Figure 6.42 shows an example display.

Figure 6.42: Example display.

6.11 Project 12: Generating musical tones — melody maker
Description: In this project, musical notes are generated to play the well-known melody
Happy Birthday. The sound is sent to the piezo sounder supplied with the kit.

Block diagram: Figure 6.43 shows the block diagram of the project.

Figure 6.43: Block diagram of the project.

Circuit diagram: The piezo sounder is connected to pin 2 of the development board shown
in Figure 6.44.

Figure 6.44: Circuit diagram of the project.

Program listing: When playing a melody each note is played for a certain duration and
with a certain frequency. In addition, a certain gap is necessary between two successive
notes. The frequencies of the musical notes starting from middle C (i.e. C4) are given
below. The harmonic of a note is obtained by doubling the frequency. For example, the
frequency of C5 is 2 × 262 = 524 Hz.

Mastering the Arduino Uno R4 - UK.indd 184Mastering the Arduino Uno R4 - UK.indd 184 13-09-2023 11:1313-09-2023 11:13

Chapter 6 ● Sensors

● 185

Note C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4
Hz 261.63 277.18 293.66 311.13 329.63 349.23 370 392 415.3 440 466.16 493.88

In order to play the tune of a melody, you need to know its musical notes. Each note is
played for a certain duration and there is a certain time gap between two successive notes.
The next thing you want is to know how to generate a sound with the required frequency
and duration. In this project, you will be generating the classic Happy Birthday melody
and thus you need to know the notes and their durations. These are given in the table be-
low where the durations are in units of 300 milliseconds (i.e., the values given in the table
should be multiplied by 300 to give the actual durations in milliseconds).

Note C4 C4 D4 C4 F4 E4 C4 C4 D4 C4 G4 F4 C4 C4 C5 A4 F4 E4 D4 A4# A4# A4 F4 G4 F4

Duration 1 1 2 2 2 3 1 1 2 2 2 3 1 1 2 2 2 2 2 1 1 2 2 2 4

The built-in function tone() generates a square wave of the specified frequency (and 50%
duty cycle) on a pin. A duration can be specified, otherwise, the wave continues until a
call to function noTone(). Only one tone can be generated at a time. If a tone is already
playing on a different pin, the call to tone() will have no effect. If the tone is playing on the
same pin, the call will set its frequency.

The program listing (program: Melody) is shown in Figure 6.45. The frequencies and dura-
tions of the melody are stored in two arrays called frequency and duration respectively.
Before the main program loop, the durations of each tone are calculated and stored in array
Durations so that the main program loop does not have to spend any time to do these cal-
culations. Inside the program loop, the melody frequencies are generated with the required
durations using built-in function tone(). Notice that the tone output is stopped by calling
function noTone(). A small delay (100 ms) is introduced between each tone. The melody
is repeated after a 3-second delay.

You can try higher harmonics of the notes for clearer sound by multiplying the frequency
with an integer number. The sound quality of the piezo sounder is not good at all. A loud-
speaker can be used with an audio amplifier for much better and clearer sound quality.

//--
// PLAY A MELODY
// =============
//
// This program plays the well-known melody Happy Birthday
//
// Author: Dogan Ibrahim
// File : Melody
// Date : June, 2023
//--
int piezo = 2; // Piezo at port 2
const int MaxNotes = 25; // MAx 25 notes
int Durations[MaxNotes];

//

Mastering the Arduino Uno R4 - UK.indd 185Mastering the Arduino Uno R4 - UK.indd 185 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 186

// Melody frequencies
//
 unsigned int frequency[] = {262,262,294,262,392,349,262,262,294,262,
 392,349,262,262,524,440,349,330,294,466,
 466,440,349,392,349};
//
// Frequency durations
//
 int duration[] = {1,1,2,2,2,3,1,1,2,2,2,3,1,1,2,2,2,2,
 2,1,1,2,2,2,3};

void setup()
{
 pinMode(piezo, OUTPUT); // Piezo is output
 for(int k = 0; k < MaxNotes; k++) // Durations
 Durations[k] = 300 * duration[k];
}

void loop()
{
 for(int k = 0; k < MaxNotes; k++)
 {
 tone(piezo, frequency[k]);
 delay(Durations[k]);
 delay(100); // Wait
 }

 noTone(piezo);
 delay(3000); // Stop 3 seconds
}

Figure 6.45: Program: Melody.

Mastering the Arduino Uno R4 - UK.indd 186Mastering the Arduino Uno R4 - UK.indd 186 13-09-2023 11:1313-09-2023 11:13

Chapter 7 ● The RFID Reader

● 187

Chapter 7 ● The RFID Reader

7.1 Overview
RFID is the acronym for Radio Frequency Identification and qualifies devices used for se-
curity and tracking purposes. An RFID system includes a reader card and a tag. Both are
included in the kit. RFID uses electromagnetic fields to transfer data over short distances.
RFID systems are mainly used in security applications. For example, they can be used to
open a door where the person having the right tag is allowed to open the door.

The RFID reader included in the kit is known as the RC522 module (Figure 7.1), with the
following basic specifications:

•	Operating frequency: 13.56 MHz
•	Operating voltage: +3.3 V
•	Operation with both SPI bus and I2C bus

Figure 7.1: RFID reader and tag.

The RFID reader is supplied with header pins which must be soldered to the sockets at the
edge of the reader before it can be used.

7.2 Project 1: Finding the Tag ID
Description: In this project, you will display the Tag ID of the supplied Tag on the Serial
Monitor.

Block diagram: Figure 7.2 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 187Mastering the Arduino Uno R4 - UK.indd 187 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 188

Figure 7.2: Block diagram of the project.

Circuit diagram: The connections between the development board ports and the RFID
reader are as follows (be careful not to connect the power pin to +5 V). Figure 7.3 shows
the circuit diagram of the project:

RFID reader pin	 Development board port
SDA			 10
SCK			 13
MOSI		 11
MISO		 12
IRQ			 not used
GND		 GND
RST			 9
3.3V		 3.3 V

Figure 7.3: Circuit diagram of the project.

Program listing: Before using the RFID reader, you have to add the RFID library to your
IDE. The library is named MFRC522 and the steps to add this library are as follows:

•	Go to the following website and download the zip file rfid-master.zip to a
folder: https://github.com/AritroMukherjee/RFID

Mastering the Arduino Uno R4 - UK.indd 188Mastering the Arduino Uno R4 - UK.indd 188 13-09-2023 11:1313-09-2023 11:13

Chapter 7 ● The RFID Reader

● 189

•	Start the IDE.

•	Click Sketch  Include Library  Add .zip Library.

•	Browse to the saved zip file and click Open.

•	You can now start to use the library.

The RFID reader library offers many functions that can be seen by unzipping the library file.
Some of the important library functions are:

mfrc522.PCD_Init()				 Initialize the RFID reader
mfrc522.PICC_IsNewCardPresent())		 Look for an RFID reader module
mfrc522.PICC_ReadCardSerial())		 Select the RFID reader to use
mfrc522.uid.uidByte[]			 Return the tag ID in an array
mfrc522.PICC_HaltA()			 Stop reading (Halt PICC)

The program called DumpInfo given on the Arduino IDE website can be used to determine
the Tag ID of your card. The steps are:

•	Start the IDE.

•	Click File  Examples  MFRC522  DumpInfo.

•	Compile and upload the program to the development board.

•	Start the Serial Monitor.

•	Place the white Tag on top of the reader and keep it there until the data display
stops on the Serial Monitor.

You should now see data displayed similar to the one shown in Figure 7.4. This is the 1-kB
memory data of the card and also its Tag ID. The 1-kB memory of the Tag is organized into
16 sectors (0 to 15), where each sector is further divided into 4 blocks (0 to 3). Each block
can store 16 bytes of data (0 to 15).

Mastering the Arduino Uno R4 - UK.indd 189Mastering the Arduino Uno R4 - UK.indd 189 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 190

Figure 7.4: Tag memory data dump.

The 1-kB memory of the Tag is organized into 16 sectors (from 0 to 15). Each sector is
further divided into 4 blocks (block 0 to 3). Each block can store 16 bytes of data (from 0
to 15). Therefore:

16 sectors × 4 blocks × 16 bytes = 1024 bytes of data on the card (i.e., 1 kB)

Block 3 of each sector (i.e. the top block) is called Sector Trailer and this contains the
Access Bits which control the read/write access to the remaining blocks in the sector.
Therefore, only the bottom 3 blocks (i.e. blocks 0, 1 and 2) of each sector are available for
user data storage. This means that you actually have 48 bytes (3×16 bytes) per 64-byte
sector for your own use.

Block 0 of sector 0 is known as the Manufacturer Block/Manufacturer Data and it con-
tains the manufacturer data and the ID of the Tag.

The Tag ID is also displayed under the heading Card UID in Figure 7.4. In this project, your
Tag ID is: 23 F0 58 A7.

7.3 Project 2: RFID door lock access with relay
Description: In this project, the RFID reader and the supplied relay are both connected to
the development board. It is assumed that a secure door entry is operated with a relay and
is protected with an RFID system. Placing an authorized Tag card near the RFID reader can
only open the door. The relay is activated for 15 seconds and after this time it is deactivated
so that the door can be closed.

Block diagram: Figure 7.5 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 190Mastering the Arduino Uno R4 - UK.indd 190 13-09-2023 11:1313-09-2023 11:13

Chapter 7 ● The RFID Reader

● 191

Figure 7.5: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 7.6. The diagram is basically the
same as in Figure 7.3, but here a relay is added to port 2.

Figure 7.6: Circuit diagram of the project.

Program listing: Figure 7.7 shows the program listing (Program: RFIDLock). At the be-
ginning of the program, the SPI and MFRC522 libraries are included in the program. Valid
card ID is stored in string ValidCard, RELAY is assigned to port 2. Inside the setup()
function, RELAY is configured as output and is deactivated. SPI bus and MFRC522 are
also initialized. The remainder of the program runs inside the main program loop. Here, the
program waits until a card is placed near the reader. When a card is placed, it is selected
and a for loop is formed to read the 4-byte card Tag ID into variable TagID. The TagID is
then compared with the authorized Tag ID ValidCard. If there is a match, the user is au-
thorized and the relay is activated for 15 seconds. If the card is not valid, the relay remains
deactivated. This process is repeated forever.

Mastering the Arduino Uno R4 - UK.indd 191Mastering the Arduino Uno R4 - UK.indd 191 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 192

//--
// RFID LOCK SYSTEM
// ================
//
// In this program the RFID card reader is used with a relay. The relay
// is only activated if an authorized Tag is placed near the reader. The
// relay stays ON for 15 seconds and then turns OFF. The Tag ID of the
// authorized valid card in this example is: 23 F0 58 A7
//
// Author: Dogan Ibrahim
// File : RFIDLock
// Date : June, 2023
//--
#include <SPI.h>
#include <MFRC522.h>

#define SS_PIN 10
#define RST_PIN 9
MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 inst
String ValidCard = "23F058A7"; // Valid Tag ID
String TagID = "";
int RELAY = 2; // RELAY at port 2
byte i;

void setup()
{
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(RELAY, LOW); // Deactivate RELAY
 SPI.begin(); // Initiate SPI bus
 mfrc522.PCD_Init(); // Initiate MFRC522
}

void loop()
{
 if (!mfrc522.PICC_IsNewCardPresent()) // Look for card
 {
 return;
 }

 if (!mfrc522.PICC_ReadCardSerial()) // Select the card
 {
 return;
 }

 TagID = "";

Mastering the Arduino Uno R4 - UK.indd 192Mastering the Arduino Uno R4 - UK.indd 192 13-09-2023 11:1313-09-2023 11:13

Chapter 7 ● The RFID Reader

● 193

 for (i = 0; i < 4; i++) // Read 4 byte Tag ID
 {
 TagID.concat(String(mfrc522.uid.uidByte[i], HEX));
 }

 TagID.toUpperCase(); // Convert to upper case
 mfrc522.PICC_HaltA(); // Stop reading

 if(TagID == ValidCard) // Valid card?
 {
 digitalWrite(RELAY, HIGH); // RELAY ON
 delay(15000); // Wait 15 seconds
 digitalWrite(RELAY, LOW); // RELAY OFF
 }
 else
 digitalWrite(RELAY, LOW); // RELAY OFF
}

Figure 7.7: Program: RFIDLock.

Figure 7.8 shows the project built on the breadboard.

Figure 7.8: Project built on the breadboard.

Mastering the Arduino Uno R4 - UK.indd 193Mastering the Arduino Uno R4 - UK.indd 193 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 194

Chapter 8 ● The 4×4 Keypad

8.1 Overview
Keypads provide an uncomplicated way to let users interact with your projects. They can
be used to enter passwords, control games and robots, navigate menus, and so on. In
this chapter, you will develop projects on your development board using the supplied 4×4
pushbutton keypad.

The 4×4 Pushbutton keypad
The keypad supplied (Figure 8.1) with the kit is a 4×4 matrix, 16-button type with 4 row
and 4 column connections. The keys are marked S1 through S16.

Figure 8.1: Supplied 4×4 keypad.

The structure of a 4×4 keypad is shown in Figure 8.1 (replace the key names with S1
through S16). There are 4 columns (C1, C2, C3, C4) and 4 rows (R1, R2, R3, R4).

Figure 8.2: A 4×4 keypad structure.

Mastering the Arduino Uno R4 - UK.indd 194Mastering the Arduino Uno R4 - UK.indd 194 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 195

The keypad works by a scanning process as follows:

•	The row pins are connected to processor outputs, and column pins are
connected to processor inputs with pullups so that the state of a pin is HIGH if
the key is not pressed.

•	The processor sets all row pins HIGH.
•	The processor sets row 1 pins LOW.
•	The processor reads the state of each column. If a column pin is HIGH then

that button is not pressed. if a column pin is LOW, then that is the pressed key.
•	The above process is repeated for the next row if a pressed button has not

been detected.

A keypad library is provided for the Arduino IDE which makes simplifies the use of keypads
in your projects. Some example projects are presented in the next sections.

8.2 Project 1: Display the pressed key code on the Serial Monitor
Description: This is a simple project where the pressed keys are displayed on the Serial
Monitor. The aim of this project is to show how the keypad library can be used in projects.

Block diagram: Figure 8.3 shows the block diagram of the project.

Figure 8.3: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 8.4. The connections between the
keypad and the development board are as follows:

Keypad pin		 Development board port
C4			 2
C3			 3
C2			 4
C1			 5
R1			 6
R2			 7
R3			 8
R4			 9

Mastering the Arduino Uno R4 - UK.indd 195Mastering the Arduino Uno R4 - UK.indd 195 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 196

Figure 8.4: Circuit diagram of the project.

Program listing: At the time of drafting this book, only the Adafruit Keypad library was
compatible with the Arduino Uno R4. Install this library as follows:

•	Click to open the LIBRARY MANAGER.

•	Search Adafruit Keypad by Adafruit in LIBRARY MANAGER.

•	Click INSTALL to install the library.

•	Exit the LIBRARY MANAGER.

At the time of authoring this book, the latest version of this library was 1.3.0.

Figure 8.5 shows the program listing (Program: KeypadTest). At the beginning of the pro-
gram, the keypad library is included, and the number of rows and columns is specified. The
array keys stores the button names in a 4×4 matrix. Notice that the buttons are labelled
as 1 to 9 and then A to G. Then, the connections between the keypad and the development
board ports are defined. Inside the main program, a key is read, and its value is displayed
on the Serial Monitor.

//--
// KEYPAD TEST PROGRAM
// ===================
//
// This program is used to test the keypad. The keys pressed on the
// keypad are displayed on the Serial Monitor
//
// Author: Dogan Ibrahim
// File : KeypadTest
// Date : June, 2023
//--

Mastering the Arduino Uno R4 - UK.indd 196Mastering the Arduino Uno R4 - UK.indd 196 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 197

#include "Adafruit_Keypad.h"

const byte ROWS = 4;
const byte COLS = 4;

char keys[ROWS][COLS] = {{'1', '2', '3', '4'},
 {'5', '6', '7', '8'},
 {'9', 'A', 'B', 'C'},
 {'D', 'E', 'F', 'G'}};

byte rowPins[ROWS] = {9, 8, 7, 6};
byte colPins[COLS] = {2, 3, 4, 5};

Adafruit_Keypad MyKeys = Adafruit_Keypad(
makeKeymap(keys),rowPins,colPins,ROWS,COLS);

void setup()
{
 Serial.begin(9600);
 MyKeys.begin();
 delay(5000);
}

void loop()
{
 MyKeys.tick();

 while(MyKeys.available())
 {
 keypadEvent e = MyKeys.read();
 if(e.bit.EVENT == KEY_JUST_PRESSED) Serial.println((char)e.bit.KEY);
 }

}

Figure 8.5: Program: KeypadTest.

Figure 8.6 shows the display when keys 1 to G are pressed.

Mastering the Arduino Uno R4 - UK.indd 197Mastering the Arduino Uno R4 - UK.indd 197 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 198

Figure 8.6: Display when keys are pressed.

8.3 Project 2: Integer calculator with LCD
Description: This is a simple integer calculator project. The calculator can perform the
four basic operations: + – * / on integer numbers. Results are displayed on the LCD.

The operation of the calculator is as follows: when power is applied to the system, the LCD
displays the text CALCULATOR for 2 seconds. Then text No1: is displayed in the first row
of the LCD and the user is expected to type the first number and then press the ENTER
(E) key. Then text No2: is displayed in the second row of the LCD where the user enters
the second number and press the ENTER key. After this, the required operation should be
entered. The result will be displayed on the LCD for 5 seconds and then the LCD will be
cleared, ready for the next calculation. The example below shows how numbers 12 and 20
can be added:

	 No1: 12 ENTER
	 No2: 20 ENTER
	 Op: + ENTER
	 12 + 20 = 32

The buttons are given the names as shown in Figure 8.7. The names used in the program
for the buttons are as follows:

1 2 3 4
5 6 7 8
9 0 E
+ - * /

Mastering the Arduino Uno R4 - UK.indd 198Mastering the Arduino Uno R4 - UK.indd 198 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 199

Figure 8.7: Keypad buttons.

Block diagram: Figure 8.8 shows the block diagram of the project.

Figure 8.8: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 8.9. The keypad is connected as
in the previous project. The LCD is connected as in the previous projects using the LCD.

Figure 8.9: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 199Mastering the Arduino Uno R4 - UK.indd 199 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 200

Program listing: Figure 8.10 shows the program listing (Program: KeypadCalc). At the
beginning of the program, Keypad and I2C LCD libraries are included and the keypad but-
ton layout is defined. Inside the setup() function, the LCD is initialized and the backlight
is turned ON. The program then displays the text CALCULATOR for 2 seconds. After this,
the user enters the first number with response to prompt No1:. Multi digit numbers can
be entered. Then the second number is entered this time in response to No2:. Finally, the
operation is entered. The Enter key (E) must be pressed after entering the numbers or the
operation. A switch statement is used to determine what type of mathematical operation
is required. The result is stored in variable Calc which is displayed on the LCD at the end
of the program.

//--
// INTEGER CALCULATOR
// ==================
//
// This is an integer calculator program using a keypad and LCD
// Basic operations of +-*/ can be performed
//
// Author: Dogan Ibrahim
// File : KeypadCalc
// Date : June, 2023
//--
#include "Adafruit_Keypad.h"
#include <LCD_I2C.h>
LCD_I2C lcd(0x27, 16, 2);

const int ROWS = 4; //4 rows
const int COLS = 4; //4 columns
char key, ky;
unsigned long Calc, Op1, Op2;
unsigned char MyKey, Op;
unsigned int KeyNo;

char keys[ROWS][COLS] = //Button names
{
 {'1','2','3', '4'},
 {'5','6','7', '8'},
 {'9','0',' ', 'E'},
 {'+','-','*', '/'}
};

byte rowPins[ROWS] = {9, 8, 7, 6};
byte colPins[COLS] = {2, 3, 4, 5};

Adafruit_Keypad MyKeys = Adafruit_Keypad(
makeKeymap(keys),rowPins,colPins,ROWS,COLS);

Mastering the Arduino Uno R4 - UK.indd 200Mastering the Arduino Uno R4 - UK.indd 200 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 201

void setup()
{
 lcd.begin(); //Initialize LCD
 lcd.backlight(); //Backlight ON
 MyKeys.begin();			 //Initialize Keypad
}

void loop()
{
 lcd.clear(); // Clear LCD
 lcd.setCursor(0, 0); // Cursor at (0,0)
 lcd.print("CALCULATOR"); // Display heading
 delay(2000); // 2 seconds delay
 lcd.clear(); // Clear display

//
// Get first number
//
 lcd.setCursor(0, 0);
 Op1 = 0;
 lcd.print("No1: "); // Display No1:
 while(1)
 {
 while(!MyKeys.available())
 {
 MyKeys.tick();
 keypadEvent e = MyKeys.read();
 if(e.bit.EVENT == KEY_JUST_PRESSED)
 {
 ky=(char)e.bit.KEY;
 break;
 }
 }

 if(ky == 'E')break; // If E, exit
 KeyNo = ky - '0';
 lcd.print(KeyNo); // Display digits while entered
 Op1 = 10*Op1 + KeyNo; // Total so far
 }

//
// Get second number
//
 lcd.setCursor(0, 1);
 Op2 = 0;

Mastering the Arduino Uno R4 - UK.indd 201Mastering the Arduino Uno R4 - UK.indd 201 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 202

 lcd.print("No2: "); // Display No2:
 while(1)
 {
 while(!MyKeys.available())
 {
 MyKeys.tick();
 keypadEvent e = MyKeys.read();
 if(e.bit.EVENT == KEY_JUST_PRESSED)
 {
 ky=(char)e.bit.KEY;
 break;
 }
 }

 if(ky == 'E')break; // If E, exit
 KeyNo = ky - '0';
 lcd.print(KeyNo); // Display digits while entered
 Op2 = 10*Op2 + KeyNo; // Total so far
 }

//
// Get operation
//
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Op: "); // Display Op:
 while(1)
 {
 while(!MyKeys.available())
 {
 MyKeys.tick();
 keypadEvent e = MyKeys.read();
 if(e.bit.EVENT == KEY_JUST_PRESSED)
 {
 ky=(char)e.bit.KEY;
 break;
 }
 }

 if(ky == 'E')break; // If E, exit
 Op = ky;
 lcd.print(char(Op)); // Display operation
 }

 switch(Op)
 {
 case '+':

Mastering the Arduino Uno R4 - UK.indd 202Mastering the Arduino Uno R4 - UK.indd 202 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 203

 Calc = Op1 + Op2; // Addition required
 break;
 case '-':
 Calc = Op1 - Op2; // Subtraction required
 break;
 case '*':
 Calc = Op1 * Op2; // Multiplication required
 break;
 case '/':
 Calc = Op1 / Op2; // Division required
 break;
 }

 lcd.clear(); // Clear display
 lcd.setCursor(0, 0);
 lcd.print(Op1); // Display first number
 lcd.print(char(Op)); // Display operation
 lcd.print(Op2); // Display second number
 lcd.print("="); // Display =
 lcd.print(Calc); // Display result

 delay(5000);
 lcd.clear();
}

Figure 8.10: Program: KeypadCalc.

Figure 8.11 shows the steps in carrying out a simple addition.

Figure 8.11: Steps in addition.

8.4 Project 3: Keypad door security lock with relay
Description: This is a keypad-based door security lock. It is assumed that the secure door
is controlled with a relay such that activating the relay opens the door. In this project, the
password is hardcoded as 1357 and the relay will only be activated if the correct code is
entered on the keypad. The password must be terminated by pressing the Enter € key.

Mastering the Arduino Uno R4 - UK.indd 203Mastering the Arduino Uno R4 - UK.indd 203 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 204

The relay will stay ON for 15 seconds and then it will be deactivated so that the door can
be closed. You should press the E key before entering the secret key so that any previous
numbers for example entered by mistake or entered by unauthorized people are cancelled.

Block diagram: Figure 8.12 shows the block diagram of the project.

Figure 8.12: Block diagram of the project.

Circuit diagram: The relay is connected to port 10 of the development board. The keypad
is connected as in the previous project. Figure 8.13 shows the circuit diagram.

Figure 8.13: Circuit diagram of the project.

Program listing: Figure 8.14 shows the program listing (Program: KeypadLock). At the
beginning of the program, the KEYPAD library is included, SecretCode is set to 1357, and
the keypad buttons are defined. Also, RELAY is assigned to port 10. Inside the setup()
function, RELAY is configured as output and is deactivated. The program then reads the
secret code from the keypad until the E key is pressed. The user-entered number is com-
pared to the hardcoded secret code and if they are equal then the relay is activated for 15
seconds, otherwise, the relay remains OFF. Notice that you should enter the E key before
entering the secret code so that any previous numbers entered, for example, by mistake,
are cancelled.

Mastering the Arduino Uno R4 - UK.indd 204Mastering the Arduino Uno R4 - UK.indd 204 13-09-2023 11:1313-09-2023 11:13

Chapter 8 ● The 4×4 Keypad

● 205

//--
// KEYPAD LOCK WITH RELAY
// ======================
//
// This is a keypad lock project. A relay is activated if the
// correct code is entered on the keypad. Relay remains active
// for 15 seconds. The secret code is 1 3 5 7 follwed by E
//
// Author: Dogan Ibrahim
// File : KeypadLock
// Date : June, 2023
//--
#include "Adafruit_Keypad.h"

const int ROWS = 4; // 4 rows
const int COLS = 4; // 4 columns
unsigned char MyKey, ky;
unsigned int KeyNo;
unsigned long int SecretCode = 1357; // Secret code
unsigned long int UserCode; // User entered code
int RELAY = 10; // RELAY on port 10

char keys[ROWS][COLS] = // Keypad names
{
 {'1','2','3', '4'},
 {'5','6','7', '8'},
 {'9','0',' ', 'E'},
 {' ',' ',' ', ' '}
};

byte rowPins[ROWS] = {9, 8, 7, 6};
byte colPins[COLS] = {2, 3, 4, 5};

Adafruit_Keypad MyKeys = Adafruit_Keypad(
makeKeymap(keys),rowPins,colPins,ROWS,COLS);

void setup()
{
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(RELAY, LOW); // RELAY OFF
 MyKeys.begin();
}

void loop()
{
//

Mastering the Arduino Uno R4 - UK.indd 205Mastering the Arduino Uno R4 - UK.indd 205 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 206

// Get the user code
//
 MyKey = 0;
 UserCode = 0;

 while(1)
 {
 while(!MyKeys.available())
 {
 MyKeys.tick();
 keypadEvent e = MyKeys.read();
 if(e.bit.EVENT == KEY_JUST_PRESSED)
 {
 ky = (char)e.bit.KEY;
 break;
 }
 }

 if(ky == 'E')break; // If E, exit
 KeyNo = ky - '0';
 UserCode = 10*UserCode + KeyNo; // User code
 }

 if(UserCode == SecretCode)
 {
 digitalWrite(RELAY, HIGH); // RELAY ON
 delay(15000); // 15 secs delay
 digitalWrite(RELAY, LOW); // RELAY OFF
 }
 else
 digitalWrite(RELAY, LOW);
}

Figure 8.14: Program: KeypadLock.

Suggestion: you may like to choose a long secret code that's not easily guessed by trial
and error. Here, you have 16 keys. For example, by choosing an 8-digit secret code, the
number of permutations is 168 which is over billions assuming that the numbers can be
repeated!

Mastering the Arduino Uno R4 - UK.indd 206Mastering the Arduino Uno R4 - UK.indd 206 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 207

Chapter 9 ● The Real-Time Clock (RTC) Module

9.1 Overview
The RTC module is an accurate clock module for use in microcontroller-based applications.
The module provides seconds, minutes, hours, days, dates, months, and year information.
The leap year is set automatically, where the module is reportedly valid until the year 2100.

9.2 The supplied RTC module
The supplied RTC module (Figure 9.1) is based on synchronous serial communication (not
I2C compatible). As shown in the image, it uses the DS1302 RTC chip with a quartz crystal
for timing. A CR2032-coin type battery (not supplied due to transport restrictions) can be
used to keep the clock running when the module is disconnected from the MCU.

Figure 9.1: The supplied RTC module.

The module has the following 4 pins:

VCC		 power supply (+5 V)
GND	 GND
CLK		 clock
DAT		 data
RST		 reset

Two projects are given in this chapter. The first project is based on using the Serial Monitor
to set the date/time and also to display the date/time and this is mainly for learning how to
use the RTC module. The second project is based on using LCD to display the current date/
time already set using the Serial Monitor.

9.3 Project 1: RTC with Serial Monitor
Description: In this project, you learn to set the current date/time using the Serial Mon-
itor. The date and time will then be displayed on the Serial Monitor as the RTC is running.

Block diagram: Figure 9.2 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 207Mastering the Arduino Uno R4 - UK.indd 207 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 208

Figure 9.2: Block diagram of the project.

Circuit diagram: The connections between the development board and the RTC module
are shown in Figure 9.3. The interface between the development board ports and the RTC
module is as follows:

RTC module		 Development board port
RST				 2
DAT				 3
CLK				 4
GND			 GND
VCC				 +5V

Figure 9.3: Circuit diagram of the project.

Program listing: There are several RTC libraries for the Arduino IDE. The one you will be
using in this project is called Virtuabotix library. The steps to add this library to your IDE
are as follows:

•	Start the IDE.

•	Clock Sketch  Include Library  Add .ZIP Library.

•	Browse and select the ArduinoRTCLibrary-master.zip file.

Mastering the Arduino Uno R4 - UK.indd 208Mastering the Arduino Uno R4 - UK.indd 208 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 209

Figure 9.4 shows the program listing (Program: RTC). At the beginning of the program, the
RTC library is included. Inside the setup() function, the current date and time are set on
the RTC using the following statement:

	 RTC.setDS1302Time(00, 52, 18, 4, 19, 7, 2023);

Where the parameters are:

	 Seconds: 	 00
	 Minutes: 	 52
	 Hours: 		 18
	 Day of week: 	 4
	 Day of month: 	 19
	 Month: 		 7
	 Year: 		 2023

//--
// REAL TIME CLOCK MODULE
// ======================
//
// In this program we setup the RTC module at the current date and time
// using the Serial Monitor
//
// Author: Dogan Ibrahim
// File : RTC
// Date : June, 2023
//--
#include <virtuabotixRTC.h>
#include <EEPROM.h>
virtuabotixRTC RTC(4, 3, 2); // CLK=4 ,DAT=3,RST=2

void setup()
{
 EEPROM.write(0,0);
 Serial.begin(9600); // Serial Monitor
 delay(5000);

 //
 // Set the current date and time as:
 // seconds,minutes,hours,day of the week,day of the month,month,year
 // If address 0 of EEPROM is 0xAA then it is assumed that date and time
 // are correct, otherwise new date and time must be entered
 //
 int chk = EEPROM.read(0);
 if(chk != 0xAA)
 {

Mastering the Arduino Uno R4 - UK.indd 209Mastering the Arduino Uno R4 - UK.indd 209 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 210

 RTC.setDS1302Time(00, 52, 18, 5, 19, 7, 2023);
 EEPROM.write(0, 0xAA); // Write to EEPROM
 delay(100);
 }
}

//
// Display leading 0 if the item is less than 10
//
void Display(int d)
{
 if(d < 10)Serial.print("0");
 Serial.print(d);
}

void loop()
{
 RTC.updateTime(); // Update for display

 Serial.print("Current Date & Time: ");
 Display(RTC.dayofmonth); // Display day of month
 Serial.print("/");
 Display(RTC.month); // Display month
 Serial.print("/");
 Display(RTC.year); // Display year
 Serial.print(" ");
 Display(RTC.hours); // Display hours
 Serial.print(":");
 Display(RTC.minutes); // Display minutes
 Serial.print(":");
 Display(RTC.seconds); // Display seconds
 Serial.println();
 delay(1000);
}

Figure 9.4: Program: RTC.

The above statement must be set once or when it is required to update the date or time
(e.g. after a power loss), otherwise the current date and time may be wrong. In this pro-
gram data 0xAA is written to the first location of the EEPROM after setting the date and
time. The next time the program runs, it checks address 0 of the EEPROM and if that con-
tains data 0xAA then it is assumed that both the data and time are correct and the above
statement is not executed. The current date and time are displayed inside the main pro-
gram loop. Function Display() displays a leading 0 if the value to be displayed is under 10.
Figure 9.5 shows a sample display on the Serial Monitor.

Mastering the Arduino Uno R4 - UK.indd 210Mastering the Arduino Uno R4 - UK.indd 210 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 211

Figure 9.5: Sample display produced by the program.

9.4 Project 2: RTC with LCD
Description: In this project, you will display the current date/time on the LCD.

Block diagram: Figure 9.6 shows the block diagram of the project.

Figure 9.6: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 9.7. The RTC module and the LCD
are connected to the development board as in the previous projects.

Figure 9.7: Circuit diagram of the project.

Program listing: Figure 9.8 shows the program listing (Program: RTCLCD). The program
is very similar to the one in Figure 9.4, but here date and time are displayed on LCD. Figure
9.9 shows a sample display.

Mastering the Arduino Uno R4 - UK.indd 211Mastering the Arduino Uno R4 - UK.indd 211 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 212

//--
// REAL TIME CLOCK MODULE
// ======================
//
// In this program the RTC date and time are displayed on LCD
//
// Author: Dogan Ibrahim
// File : RTCLCD
// Date : June, 2023
//--
#include <LCD_I2C.h>
#include <virtuabotixRTC.h>

virtuabotixRTC RTC(4, 3, 2); // CLK=4 ,DAT=3,RST=2
LCD_I2C lcd(0x27, 16, 2);

void setup()
{
 lcd.begin(); // Initialize the lcd
 lcd.backlight(); // Backlight ON
}

//
// Display leading 0 if the item is less than 10
//
void Display(int d)
{
 if(d < 10)lcd.print("0");
 lcd.print(d);
}

void loop()
{
 lcd.clear();
 RTC.updateTime(); // Update for display
 lcd.setCursor(0, 0);

 Display(RTC.dayofmonth); // Display day of month
 lcd.print("/");
 Display(RTC.month); // Display month
 lcd.print("/");
 Display(RTC.year); // Display year
 lcd.print(" ");
 lcd.setCursor(0, 1);
 Display(RTC.hours); // Display hours

Mastering the Arduino Uno R4 - UK.indd 212Mastering the Arduino Uno R4 - UK.indd 212 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 213

 lcd.print(":");
 Display(RTC.minutes); // Display minutes
 lcd.print(":");
 Display(RTC.seconds); // Display seconds
 delay(1000);
}

Figure 9.8: Program: RTCLCD.

Figure 9.9: Sample display.

9.5 Project 3: Temperature and humidity display with time stamping
Description: In this project, the ambient temperature and humidity are read and dis-
played on the Serial Monitor with time-stamping.

Block diagram: Figure 9.10 shows the block diagram of the project.

Figure 9.10: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 9.11. The RTC module is connect-
ed to the development board as in the previous project.

Mastering the Arduino Uno R4 - UK.indd 213Mastering the Arduino Uno R4 - UK.indd 213 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 214

Figure 9.11: Circuit diagram of the project.

Program listing: Figure 9.12 shows the program listing (Program: RTCDHT11). At the
beginning of the program, the RTC and the DHT11 libraries are included. Inside the set-
up(), DHT11 library is initialized and Serial Monitor is enabled. Function ReadDHT11()
reads the temperature and humidity. Inside the main program loop, the current date and
time are read and displayed together with the temperature and humidity data.

//--
// TIME STAMPED TEMPERATURE AND HUMIDITY
// =====================================
//
// In this program the temperature and humidity readings are time stamped
// and displayed on the Serial Monitor every 5 seconds
//
// Author: Dogan Ibrahim
// File : RTCDHT11
// Date : June, 2023
//--
#include "DHT.h"
#include <virtuabotixRTC.h>
virtuabotixRTC RTC(4, 3, 2); // CLK=4 ,DAT=3,RST=2
float hum, temp;
#define Sensor 5 // DHT11 at port 5
#define DHTTYPE DHT11 // DHT11 is used
DHT dht(Sensor, DHTTYPE);

void setup()
{
 dht.begin();
 Serial.begin(9600);
 delay(5000);

Mastering the Arduino Uno R4 - UK.indd 214Mastering the Arduino Uno R4 - UK.indd 214 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 215

}

//
// Read the DHT11 sensor temperature and humidity
//
int ReadDHT11()
{
 hum = dht.readHumidity(); // Read humidity
 temp = dht.readTemperature(); // Read temperature in C

 // Check if any read failed and return status to caller to try again
 if (isnan(hum) || isnan(temp))
 {
 return 0;
 }
 else
 return 1;
}

//
// Display leading 0 if the item is less than 10
//
void Display(int d)
{
 if(d < 10)Serial.print("0");
 Serial.print(d);
}

void loop()
{
 if(ReadDHT11() == 1) // If successful read
 {
 RTC.updateTime(); // Update for display
 Display(RTC.dayofmonth); // Display day of month
 Serial.print("/");
 Display(RTC.month); // Display month
 Serial.print("/");
 Display(RTC.year); // Display year
 Serial.print(" ");
 Display(RTC.hours); // Display hours
 Serial.print(":");
 Display(RTC.minutes); // Display minutes
 Serial.print(":");
 Display(RTC.seconds); // Display seconds

Mastering the Arduino Uno R4 - UK.indd 215Mastering the Arduino Uno R4 - UK.indd 215 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 216

 Serial.print(" T="); // Display T=
 Serial.print(temp); // DIsplay temperature
 Serial.print("C"); // Display C
 Serial.print(" H="); // Display H=
 Serial.print(hum); // Display humidity
 Serial.println("%"); // Display %
 }
 delay(5000); // Every 5 seconds
}

Figure 9.12: Program: RTCDHT11.

Figure 9.13 shows the sample output on the Serial Monitor.

Figure 9.13: Sample output.

9.6 Using the built-in RTC
The RTC on the UNO R4 Minima can be accessed using the RTC library that is included in the
Renesas processor core. This library allows you to set/get the time as well as using alarms
to trigger interrupts.

To set the starting time for the RTC, you can create an RTCTime object. Here you can
specify the day, month, year, hour, minute, second, and specify the day of the week as well
as daylight saving mode. Then to set the time, use the setTime() method. To retrieve the
time, you need to use the getTime() method. The following methods can be used to get
the date and time:

•	getDayOfMonth()
•	getMonth()
•	getYear()
•	getHour()
•	getMinutes()
•	getSeconds()

An example project is given below.

9.6.1 Project 4: Setting and displaying the current time
Description: In this project, the current time will be set and then it will be displayed every
second on the Serial Monitor.

Mastering the Arduino Uno R4 - UK.indd 216Mastering the Arduino Uno R4 - UK.indd 216 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 217

Program listing: Figure 9.14 shows the program listing (Program: RenesasRTC). The
current date and time are set and then displayed every second as shown in Figure 9.15.

//--
// SET THE CURRENT DATE AND TIME AND THEN DISLAY IT
// ==
//
// This program uses the RTC on the Renesas processor. The current date
// and time are set and then displayed every second on Serial Monitor
//
// Author: Dogan Ibrahim
// File : RenesasRTC
// Date : June, 2023
//--
#include "RTC.h"

void setup()
{
 Serial.begin(9600);
 delay(5000);

 RTC.begin();
 RTCTime startTime(15, Month::JULY, 2023, 17, 37, 00, DayOfWeek::SATURDAY,
SaveLight::SAVING_TIME_ACTIVE);
 RTC.setTime(startTime);
}

void loop()
{
 RTCTime currentTime;
 RTC.getTime(currentTime);

 Serial.print(currentTime.getDayOfMonth());
 Serial.print("/");
 Serial.print(Month2int(currentTime.getMonth()));
 Serial.print("/");
 Serial.print(currentTime.getYear());
 Serial.print(" - ");
//
// Print time in format: HH:MM:SS
//
 Serial.print(currentTime.getHour());
 Serial.print(":");
 Serial.print(currentTime.getMinutes());
 Serial.print(":");
 Serial.println(currentTime.getSeconds());

Mastering the Arduino Uno R4 - UK.indd 217Mastering the Arduino Uno R4 - UK.indd 217 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 218

 delay(1000);
}

Figure 9.14: Program: RenesasRTC.

Figure 9.15: Displaying on the Serial Monitor.

The RTC can be used to set periodic interrupts. An example project is given below.

9.6.2 Project 5: Periodic interrupt every 2 seconds
Description: In this project, the on-board LED will be flashed every 2 seconds using RTC-
based periodic interrupts.

Program listing: Figure 9.16 shows the program listing (Program: RTCLED). Inside the
setup() function, the on-board LED is configured as output. It is important that the RTC.
setTime() must be called for the periodic interrupts to work. It does not matter what the
date and time are set to. Function ActLED is configured as the callback function which is
called automatically every 2 seconds. Inside this function, the LED is toggled.

The periodic interrupts support the following periods:

ONCE_EVERY_2_SEC
ONCE_EVERY_1_SEC
N2_TIMES_EVERY_SEC
N4_TIMES_EVERY_SEC
N8_TIMES_EVERY_SEC
N16_TIMES_EVERY_SEC
N32_TIMES_EVERY_SEC
N64_TIMES_EVERY_SEC
N128_TIMES_EVERY_SEC
N256_TIMES_EVERY_SE

//--
// PERIODIC INTERRUPTS
// ===================
//
// This program uses the RTC on the Renesas processor to generate
// periodic interrupts at every 2 seconds.The on-board LED is flashed

Mastering the Arduino Uno R4 - UK.indd 218Mastering the Arduino Uno R4 - UK.indd 218 13-09-2023 11:1313-09-2023 11:13

Chapter 9 ● The Real-Time Clock (RTC) Module

● 219

// when a periodic interrupt occurs (i.e. every 2 seconds)
//
// Author: Dogan Ibrahim
// File : RTCLED
// Date : July, 2023
//--
#include "RTC.h"

const int LED = 13; // On-board LED

void ActLED() // Callback function
{
 static bool flag = false;

 if(flag == true)
 digitalWrite(LED, HIGH);
 else
 digitalWrite(LED, LOW);

 flag = !flag;
}

//
// Configure the periodic interrupts. RTC.setTime() must be called for the
periodic
// interrupts to work. It does not matter what the date and time are set to
//
void setup()
{
 pinMode(LED, OUTPUT);

 RTC.begin();
 RTCTime mytime(25, Month::AUGUST, 2022, 14, 37, 00, DayOfWeek::THURSDAY,
SaveLight::SAVING_TIME_ACTIVE);
 RTC.setTime(mytime);
 RTC.setPeriodicCallback(ActLED, Period::ONCE_EVERY_2_SEC);
}

void loop()
{
}

Figure 9.16: Program: RTCLED.

Mastering the Arduino Uno R4 - UK.indd 219Mastering the Arduino Uno R4 - UK.indd 219 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 220

Note: The Arduino Uno R4 WiFi board has a VRTC pin for connecting an external battery
(1.6 – 3.6 V) permitting the on-board RTC to run even when the board is not powered.
On the Uno R4 Minima board, there is no such pin, and the RTC is powered from the +5
V supply rail.

Mastering the Arduino Uno R4 - UK.indd 220Mastering the Arduino Uno R4 - UK.indd 220 13-09-2023 11:1313-09-2023 11:13

Chapter 10 ● The Joystick

● 221

Chapter 10 ● The Joystick

10.1 Overview
Joysticks are used in many game consoles, in robotics, in mouse control applications, and
so on. In this chapter, you will learn the basic operation of the joystick supplied with the kit
and discover how you can use it.

10.2 The joystick
The joystick supplied with the kit (Figure 10.1) is an analog device that is similar to two
potentiometers connected together, one for the horizontal movement (X-axis) and one for
the vertical movement (Y-axis). Additionally, the joystick includes a pushbutton switch. The
main aim of a joystick is to communicate motion in 2D. As the joystick arm is moved left-
right or up-down, the resistances of the two potentiometers change, and this data can be
used to detect the movement in 2D.

Figure 10.1: The supplied joystick.

The joystick is connected to the external world with a set of pins. The main output pins are
VRX and VRY which determine how far the joystick arm is pushed in the X or Y dimensions:

GND 	 GND
+5 		 power supply
VRX 	 Joystick reading in the horizontal direction (X-axis)
VRY 	 joystick reading in the vertical direction (Y-axis)
SW 		� normally open (HIGH) switch output. Pushing the SW switch turns its out-

put LOW

10.3 Project 1 — Reading analog values from the joystick
Description: In this project, you will connect your joystick to the development board's
analog ports and display the outputs on the Serial Monitor as the joystick arm is moved.

Block diagram: Figure 10.2 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 221Mastering the Arduino Uno R4 - UK.indd 221 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 222

Figure 10.2: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 10.3. The VRX and VRY pins are
connected to analog inputs A0 and A1, respectively. Switch SW is connected to port 2.

Figure 10.3: Circuit diagram of the project.

Program listing: Figure 10.4 shows the program listing (Program: Joystick). In this
program, the ADC is used in default 10-bit mode. At the beginning of the program, the
connections between the joystick and the development board ports are defined. Inside the
setup() function, the Serial Monitor is initialized to 9600 baud (bit/s). Inside the main pro-
gram loop, you read the analog X and Y values as the joystick arm is moved left, right, up,
and down. You also read the switch output and display it on the Serial Monitor.

Figure 10.5 shows an example display of the Serial Monitor.

//--
// JOYSTICK
// ========
//
// In this program the movements of the joystick are displayed
//
// Author: Dogan Ibrahim
// File : Joystick
// Date : July, 2023

Mastering the Arduino Uno R4 - UK.indd 222Mastering the Arduino Uno R4 - UK.indd 222 13-09-2023 11:1313-09-2023 11:13

Chapter 10 ● The Joystick

● 223

//--
#define X A0 // X axis
#define Y A1 // Y axis
int SW = 2; // SW pin

void setup()
{
 pinMode(SW, INPUT_PULLUP); // SW pin is input
 Serial.begin(9600); // Serial Monitor
 delay(5000);
}

void loop()
{
 int Xdir = analogRead(X); // Read X values
 int Ydir = analogRead(Y); // Read Y values

 Serial.print(Xdir); // Display X values
 Serial.print("\t"); // Tab
 Serial.print(Ydir); // Display Y values
 Serial.print("\t"); // Tab
 Serial.println(digitalRead(SW)); // Display switch value
 delay(250);
}

Figure 10.4: Program: Joystick.

Figure 10.5: Example display.

Mastering the Arduino Uno R4 - UK.indd 223Mastering the Arduino Uno R4 - UK.indd 223 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 224

Observations (Connector of joystick at the left):
Table 10.1 shows the results obtained by the author when the joystick arm is moved, as
well as when the switch is pressed.

Arm position A0 reading
(X-axis)

A1 reading
(Y-axis)

SW
reading

Idle 504 508 1

Fully right 1019 508 1

Fully left 0 508 1

Fully up 504 0 1

Fully down 504 1019 1

SW pressed arm idle 504 508 0

Table 10.1: Results when the joystick arm is moved.

The default ADC of the Arduino is 10 bits, which corresponds to 1024 levels. When the
joystick arm is idle, you expect the readings to be 512 at both axes. You obtained 504 and
508 in the idle position, which are very close to the theoretical value. Also, when fully in one
direction you'd expect 1023. The value 1019 obtained is also very close to the theoretical
value.

Mapping the output
In some applications, you may want to map the joystick output of 0 to 1023 to some other
range, say, 0 to 100, so that 100, for example, corresponds to full movement in one di-
rection, and 50 corresponds to the idle position. This is done using the map statement as
shown in the program in Figure 10.6 (Program: Joystick2).

//--
// 		 JOYSTICK
// 		 ========
//
// In this program the movements of the joystick are displayed
// In this version of the program the output is mapped 0 to 100
//
// Author: Dogan Ibrahim
// File : Joystick2
// Date : July, 2023
//--
#define X A0 // X axis
#define Y A1 // Y axis
int SW = 2; // SW pin

void setup()
{
 pinMode(SW, INPUT_PULLUP); // SW pin is input
 Serial.begin(9600); // Serial Monitor

Mastering the Arduino Uno R4 - UK.indd 224Mastering the Arduino Uno R4 - UK.indd 224 13-09-2023 11:1313-09-2023 11:13

Chapter 10 ● The Joystick

● 225

 delay(5000);
}

void loop()
{
 int Xdir = analogRead(X); // Read X values
 int Ydir = analogRead(Y); // Read Y values

 int mapinX = map(Xdir,0, 1023, 0, 100);
 int mapinY = map(Ydir, 0, 1023, 0, 100);

 Serial.print(mapinX); // Display X values
 Serial.print("\t"); // Tab
 Serial.print(mapinY); // Display Y values
 Serial.print("\t"); // Tab
 Serial.println(digitalRead(SW)); // Display switch value
 delay(250);
}

Figure 10.6: Program: Joystick2.

Figure 10.7 shows the output after the mapping.

Figure 10.7: Output after mapping.

Mastering the Arduino Uno R4 - UK.indd 225Mastering the Arduino Uno R4 - UK.indd 225 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 226

Chapter 11 ● The 8×8 LED Matrix

11.1 Overview
LED matrix devices are used in many graphical applications. In this chapter, you learn to
use the 8×8 LED matrix included in the kit.

11.2 The supplied 8×8 LED matrix
The supplied 8×8 LED matrix (Figure 11.1) is a type 1588BS with 8 rows and 8 columns,
i.e., 64 LEDs. This is a red 1.5-inch display with 3.7-mm dot size and a current draw of 5
to 20 mA. The voltage drop of each LED is 1.8 to 2.0 V.

Figure 11.1: Supplied LED matrix.

The display has 16 pins, where the pin layout is shown in Figure 11.2. Pin 1 is located at
the bottom left where the display is type-labelled. The bottom pins are 1 to 8, where pin 8
starts from top right side and goes up to 16 at the top left.

Figure 11.2: Pin layout of the display.

Mastering the Arduino Uno R4 - UK.indd 226Mastering the Arduino Uno R4 - UK.indd 226 13-09-2023 11:1313-09-2023 11:13

Chapter 11 ● The 8×8 LED Matrix

● 227

The display is normally controlled using 16 pins. This too much though and would occupy
almost all available pins of the Arduino Uno. In this chapter, you start to use the 74HC595
shift register chip to reduce the number of pins required to 11 (8 for the LEDs and 3 for
control).

11.3 Project 1: Displaying shapes
Description: In this project, you will display an UP ARROW shape on the 8×8 LED matrix.
The aim of the project is to show how the 74HC595 shift register can be used to display
shapes on the small LED matrix.

Block diagram: Figure 11.3 shows the block diagram of the project.

Figure 11.3: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 11.4, where 8 digital
ports are connected to the LED matrix through a 1-kΩ current-limiting resistor. Additional-
ly, 3 pins are used to control the shift register chip.

Figure 11.4: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 227Mastering the Arduino Uno R4 - UK.indd 227 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 228

Creating the UP ARROW shape:
Creating a shape for the LED matrix is easy. All you have to do is create a shape with 8×8
empty circles. Then fill in the circles to create your shape. Write down the hexadecimal
code for the circles that are filled in. Set 0x0 for the empty circle. Notice that each row is
represented with a byte. Examples are shown in Figure 11.5.

Figure 11.5: Creating shapes for the LED matrix.

The code to generate your up arrow is (last shape in the figure):

	 byte character[8]={0x10, 0x38, 0x54, 0x92, 0x10, 0x10, 0x10, 0x10};

Now let's write the program.

Program listing: Figure 11.6 shows the program listing (Program: LEDMATRIX). At the
beginning of the program, the 74HC595 IC pins are defined, column port pins are defined
in array ColPins, and bits of the shape to be drawn are stored in array shape. Inside the
setup() function, 74HC595 pins are configured as outputs. Also, all the column ports are
configured as outputs. Function SendTo595() receives data as its argument and sends it
out in parallel form as the display rows.

Mastering the Arduino Uno R4 - UK.indd 228Mastering the Arduino Uno R4 - UK.indd 228 13-09-2023 11:1313-09-2023 11:13

Chapter 11 ● The 8×8 LED Matrix

● 229

Inside the main program loop, you select a row and then activate or deactivate the 8-col-
umn LEDs belonging to the selected row depending on the shape to be drawn. This process
is repeated until all the rows are selected. The display is operated in common anode mode
where all te anodes are made HIGH in a row and the LED to be turned ON is made LOW.

//--
// LED MATRIX
// ==========
//
// This program draws an UP ARROW shape on the 8x8 LED matrix
//
// Author: Dogan Ibrahim
// File : LEDMATRIX
// Date : June, 2023
//--
int STCP = 11; // Latch
int SHCP = 12; // Clock
int DS = 10; // Data
int ColPins [8] = {2, 3, 4, 5, 6, 7, 8, 9}; // Column pins
byte shape[8]={0x10, 0x38, 0x54, 0x92, 0x10, 0x10, 0x10, 0x10};
int row, col, selrow, i;

void setup()
{
 pinMode(STCP, OUTPUT); // Latch is output
 pinMode(SHCP, OUTPUT); // Clock is output
 pinMode(DS, OUTPUT); // DS is output

 for(i = 0; i < 8; i++)
 {
 pinMode(ColPins[i],OUTPUT); // Column pins output
 }
}

//
// This function writes data to the 74HC595 shift register
//
void SendTo595(byte data)
{
 digitalWrite(STCP, LOW); // LAtch LOW
 shiftOut(DS, SHCP, LSBFIRST, data); // Shift out
 digitalWrite(STCP, HIGH); // LAtch HIGH
}

void loop()
{

Mastering the Arduino Uno R4 - UK.indd 229Mastering the Arduino Uno R4 - UK.indd 229 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 230

 selrow = 0x80; // Select row 8
 for(row = 0; row < 8; row++) // Do for all rows
 {
 for(i = 0; i < 8; i++)
 digitalWrite(ColPins[i], HIGH); // All cols disabled

 SendTo595(selrow); // Enable row

 for(col = 0; col < 8; col++) // Do for all cols
 {
 if(shape[row] & 1 << col) // Bit set?
 digitalWrite(ColPins[7-col], LOW); // Enable LED
 else
 digitalWrite(ColPins[7-col], HIGH); // Disable LED
 }

 selrow = selrow >> 1; // Select next row (7,6,..)
 delay(1); // Small delay
 }
}

Figure 11.6: Program: LEDMATRIX.

Figure 11.7 shows the Up arrow displayed on the LED matrix.

Figure 11.7: Displaying the up arrow.

Mastering the Arduino Uno R4 - UK.indd 230Mastering the Arduino Uno R4 - UK.indd 230 13-09-2023 11:1313-09-2023 11:13

Chapter 12 ● Motors: Servo and Stepper

● 231

Chapter 12 ● Motors: Servo and Stepper

12.1 Overview
Devices like DC and AC electric motors, stepper motors, and servo motors are actuators
typically used to move or rotate objects. Servo motors are frequently used in many hobby
and professional electronics applications such as controlling model boats, cars, drones,
and aeroplanes remotely. Motors are important in many microcontroller-based projects.
For example, in practically all robotic applications, you have to use motors in one way or
another. Two types of motors are supplied with the kit: servo motor and stepper motor. In
this chapter, you work on projects using both types of motor.

12.2 The servo motor
The servo motor supplied with the kit is the small SG90-type motor manufactured by Tow-
erPro (Figure 12.1).

Figure 12.1: Supplied servo motor.

The motor is shipped with a 25-cm length of wire and a 3-pin connector, plus two small
plastic propellers. The SG90 servo motor has the following basic specifications:

•	Weight: 9 g
•	Dimension: 23 × 12.2 × 29 mm
•	Stall torque: 1.8 kg/cm
•	Gear set: nylon
•	Speed: 0.1 sec/60 degrees
•	Wires: 3

The motor wiring details are:

Red: 	 positive supply
Brown: 	 ground supply
Orange: 	 control signal

Mastering the Arduino Uno R4 - UK.indd 231Mastering the Arduino Uno R4 - UK.indd 231 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 232

The SG90 servo motor is controlled using PWM waveforms. The SG90 uses high current and
because of this, if you are using more than one servo motor with the Arduino, it is important
to connect their power connections to an external power supply, as the Arduino may not be
able to provide the required current to both motors.

12.2.1 Project 1: Test-rotate the servo
Description: The aim of this project is to learn how to use the servo in a program. In this
project, you will perform the following continuously:

•	Rotate the servo to 0 degrees.
•	Wait 5 seconds.
•	Move to 90 degrees.
•	Wait 5 seconds.
•	Move to 180 degrees.
•	Wait 10 seconds.

Block diagram: Figure 12.2 shows the block diagram of the project.

Figure 12.2: Block diagram of the project.

Circuit diagram: Figure 12.3 shows the connections between the servo and the develop-
ment board ports. Because the servo operates with a PWM waveform, you have to connect
it to one of the Arduino Uno PWM ports (e.g., 3, 5, 6, 9, 10, 11). The PWM pins on the
Arduino Uno R4 are labelled with the ~ sign. In this project, the selected port is 9.

Mastering the Arduino Uno R4 - UK.indd 232Mastering the Arduino Uno R4 - UK.indd 232 13-09-2023 11:1313-09-2023 11:13

Chapter 12 ● Motors: Servo and Stepper

● 233

Figure 12.3: Circuit diagram of the project.

Program listing: The projects in this chapter use the servo library. Install the servo library
as follows:

•	Click to open the Library Manager at the left-hand side of the screen.

•	Type Servo.

•	Click to INSTALL to install Servo by Michael Margolis, Arduino. At the time
of drafting this book, the latest version was 1.2.1.

The following functions are commonly used in this library:

attach(pin): attach the servo to a PWM pin
write(angle): set the angle of the servo shaft in degrees
read(): read the current angle of the servo
attached(): check if the servo is attached to a pin
detach(): detach the servo from the specified pin

Figure 12.4 shows the program listing (Program: Servo1). At the beginning of the pro-
gram, the servo library is included and is then attached to port 9 in the setup() function.
Inside the main program loop, the servo is controlled as required.

//--
// SERVO TEST
// ==========
//
// This program controls the servo as described in the text
//
// Author: Dogan Ibrahim
// File : Servo1
// Date : June, 2023
//--

Mastering the Arduino Uno R4 - UK.indd 233Mastering the Arduino Uno R4 - UK.indd 233 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 234

#include <Servo.h>
Servo MyServo;

void setup()
{
 MyServo.attach(9); // Attach servo to pin 9
}

void loop()
{
 MyServo.write(0); // Go to 0 degrees
 delay(5000); // Wait 5 seconds
 MyServo.write(90); // Go to 90 degrees
 delay(5000); // Wait 5 seconds
 MyServo.write(180); // Go to 180 degrees
 delay(10000); // Wait 10 seconds
}

Figure 12.4: Program: Servo1.

Note: It is recommended to use an external +5 V supply to power any servo. The cur-
rent consumption of some SG90 servos can reach 500 mA, exceeding the Arduino's cur-
rent limit. You can easily measure the current requirements of your servo under different
conditions using a multimeter and an external power supply.

12.2.2 Project 2: Servo sweep
Description: This program sweeps the servo lever from 0 to 180 degrees in steps of 10
degrees, with a 5-second delay between each output. The servo lever is then swept back
from 180 degrees to 0 degrees after a 3-second delay.

The block diagram and circuit diagram of the project are the same as in Figure 12.2 and
Figure 12.3, respectively.

Program listing: Figure 12.5 shows the program listing (Program: Servo2). Two for
loops are used to control the servo shaft. The first loop runs from 0 to 180, while the second
one runs from 180 to 0.

//--
// SWEEPING SERVO
// ==============
//
// This program sweeps the servo from 0 to 180 degrees in one degrees steps
// and then sweeps back
//

Mastering the Arduino Uno R4 - UK.indd 234Mastering the Arduino Uno R4 - UK.indd 234 13-09-2023 11:1313-09-2023 11:13

Chapter 12 ● Motors: Servo and Stepper

● 235

// Author: Dogan Ibrahim
// File : Servo2
// Date : June, 2023
//--
#include <Servo.h>
Servo MyServo;
int angle;

void setup()
{
 MyServo.attach(9); // Attach servo to pin 9
}

void loop()
{
 for(angle = 0; angle <= 180; angle++) // Sweep 0 to 180
 {
 MyServo.write(angle);
 delay(100);
 }

 delay(2000);

 for(angle = 180; angle >= 0; angle--) // Sweep back
 {
 MyServo.write(angle);
 delay(100);
 }
}

Figure 12.5: Program: Servo2.

12.2.3 Project 3: Joystick-controlled servo
Description: In this program, you control the shaft of the servo using the joystick. Only
the horizon movement of the joystick is used. Moving the joystick to the right rotates the
motor shaft to the right by 90 degrees, and similarly moving it to the left rotates the shaft
to the left by 90 degrees.

Block diagram: Figure 12.6 shows the block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 235Mastering the Arduino Uno R4 - UK.indd 235 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 236

Figure 12.6: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 12.7. The joystick
is connected as in Chapter 10. The servo is connected to port 9 as in the previous projects.
Although the servo is shown to be connected to +5 V line of the development
board, it is recommended to use an external +5 V power supply as in Figure 12.3.

Figure 12.7: Circuit diagram of the project.

Program listing: Figure 12.8 shows the program listing (Program: Servo3). The map
function is used to map the joystick movements to shaft angles. Notice that the default ADC
resolution of 10 bits is used in this project.

//--
// SERVO JOYSTICK CONTROL
// ======================
//
// In this program horizontal movements of the joystick controls the
// shaft of the servo motor
//
// Author: Dogan Ibrahim
// File : Servo3
// Date : June, 2023
//--
#include <Servo.h>

Mastering the Arduino Uno R4 - UK.indd 236Mastering the Arduino Uno R4 - UK.indd 236 13-09-2023 11:1313-09-2023 11:13

Chapter 12 ● Motors: Servo and Stepper

● 237

#define X A0
Servo MyServo;

void setup()
{
 MyServo.attach(9); // Attach servo to pin 9
}

void loop()
{
 int Xdir = analogRead(X); // Read joystick
 int mapinX = map(Xdir,0, 1023, 180, 0); // Map
 MyServo.write(mapinX); // Move servo
 delay(50);
}

Figure 12.8: Program: Servo3.

Note: by changing the mapping to int mapinX = map(Xdir, 0, 512, 180, 0) you can
move the shaft 0 to 180 degrees left by moving the joystick from its idle position to fully
left.

12.3 The stepper motor
Stepper motors are brushless synchronous motors where a full rotation is divided into
many steps. The motor rotates by a single step when a step pulse is applied to it. These
motors are manufactured with steps of 12, 24, 36, 72, 144, 180, etc. steps per full revo-
lution. With a 12-step motor, the stepping angle is 30 degrees so that it makes a complete
360 degrees revolution in 12 steps.

The stepper motor supplied with the kit (Figure 12.9) is the type 28BYJ-48. Each step of
this motor equals 12.5 degrees, and therefore it takes 32 steps to complete a full revo-
lution. Additionally, this motor has a 1/64 gear set, which means that there are actually
32 × 64 = 2038 steps per revolution. The current requirement of the motor is about 240
mA which vastly exceeds the current capacity of an I/O pin of Arduino Uno. It is therefore
mandatory to power the motor from an external 5-V power supply.

The 28BYJ-48 motor is supplied with the ULN2003 drive board (see Figure 12.9). You
should connect the motor to this driver module before using it. The driver board has 4 on-
board LEDs which indicate the steps applied to the motor. Four control inputs labelled IN1
to IN4 are provided at the edge of the board for connection to the processor. An ON/OFF
jumper is also available on the board to isolate power from the board.

Mastering the Arduino Uno R4 - UK.indd 237Mastering the Arduino Uno R4 - UK.indd 237 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 238

Figure 12.9: 28BYJ-48 stepper motor and driver board.

12.3.1 Project 4: Rotate the motor clockwise and then anticlockwise
Description: The aim of this project is to show how to use the stepper motor in a project.
In this project, the stepper motor is rotated slowly clockwise, stopped for 2 seconds, and
then rotated anticlockwise continuously.

Block diagram: Figure 12.10 shows the block diagram of the project.

Figure 12.10: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 12.11. Ports 2, 3,
4, 5 are used to control the motor. An external +5 V power supply must be used to provide
power to the board through the driver board. Connect the +5 V line of the power supply to
pin marked + and the GND to pin marked – on the driver board.

Mastering the Arduino Uno R4 - UK.indd 238Mastering the Arduino Uno R4 - UK.indd 238 13-09-2023 11:1313-09-2023 11:13

Chapter 12 ● Motors: Servo and Stepper

● 239

Figure 12.11: Circuit diagram of the project.

Program listing: In this program, the Arduino IDE stepper motor library is used. Install
the library as follows:

•	Click to open the Library Manager at the left-hand side of the screen.

•	Type Stepper.

•	Click to INSTALL to install Stepper by Arduino. At the time of drafting this
book, the latest version was 1.1.3.

The commonly used functions supported by this library are:

stepper(steps, in1, in2, in3, in4): create an instance of the Stepper class. Define the
number of steps per revolution and the connections to the motor.

setSpeed(rpms): set the motor speed in rotations per minute (rpms). This function
doesn't make the motor turn, just sets the speed at which it will when you call step().

step(steps): this function turns the motor a specific number of steps, at a speed deter-
mined by the most recent call to setSpeed(). This function is blocking; that is, it will wait
until the motor has finished moving to pass control to the next line in your program.

The maximum speed for the 28BYJ-48 stepper motor is about 10-15 rpm when operated
at +5 V.

Figure 12.12 shows the program listing (Program: STEPPER1). At the beginning of the
program, the stepper library is included, steps per revolution is defined and the Stepper
instance is created. Notice that the driver board wirings must be declared in the software in
the order of: IN1, IN3, IN2 and IN4. Inside the setup() function, the speed of the motor
is set to 10 RPM. Inside the main program loop, the motor rotates one full revolution clock-
wise, waits 2 seconds, and then rotates one full revolution anticlockwise. This is repeated
forever after 2 seconds of delay. Notice that the step() function is blocking and it will wait
until the motor has finished moving.

Mastering the Arduino Uno R4 - UK.indd 239Mastering the Arduino Uno R4 - UK.indd 239 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 240

//--
// STEPPER MOTOR CONTROL
// =====================
//
// In this program the stepper motor rotates cw direction and then
// after a short delay ccw direction. The maximum speed of the supplied
// motor is about 10-15 rpm
//
// Author: Dogan Ibrahim
// File : STEPPER1
// Date : June, 2023
//--
#include <Stepper.h>

int StpsPerRev = 2038; // Steps per rev
Stepper MyStepper = Stepper(StpsPerRev,2,4,3,5); // IN1,3,2,4

void setup()
{
 MyStepper.setSpeed(10); // 10 RPM
}

void loop()
{
 MyStepper.step(StpsPerRev); // cw direction
 delay(2000);

 MyStepper.step(-StpsPerRev); // CCW direction
 delay(2000);
}

Figure 12.12: Program: STEPPER1.

Mastering the Arduino Uno R4 - UK.indd 240Mastering the Arduino Uno R4 - UK.indd 240 13-09-2023 11:1313-09-2023 11:13

Chapter 13 ● The Digital To Analog Converter (DAC)

● 241

Chapter 13 ● The Digital To Analog Converter (DAC)

13.1 Overview
A DAC (digital-to-analog converter) converter is useful for converting digital signals into
analog form. The Arduino Uno R4 supports one DAC. For some applications where an
analog output is required, you can use the PWM (Pulse Width Modulation) instead of "gen-
uine" analog output. For example, when dimming an LED, you can simply use a PWM-en-
abled digital pin as an analog output pin and the LED would dim just the same as if you'd
be using a DAC output. For many audio-based applications as well as for wave generation,
it is required to use genuine analog output. In this chapter, however, DAC-based projects
are discussed.

The default resolution of the DAC is 8 bits (0–255), but it can be changed to 12 bits
(0–4096) with the following statement. The analog output is available at pin A0 (or DAC):

	 analogWriteResolution(12);

13.2 Project 1: Generating a square wave with 2 V amplitude
Description: In this project, a square wave is generated at the DAC output with a frequen-
cy of 500 Hz (Period: 2 ms) and an amplitude of 2 V. The aim of this project is to show how
the DAC can be used in a simple application.

Program listing: Figure 13.1 shows the program listing (Program: Square2V). The DAC
is operated at default 8 bits. With a reference voltage of 5 V, 2 V corresponds to 2 × 256 /
5 = 102. In this program, the millis() function is used to create an accurate delay instead
of the delay() function. The program repeatedly sends 102 to DAC which corresponds to
2 V, waits for 1 ms, and then sends 0. The output waveform is plotted on an OWON digital
oscilloscope as shown in Figure 13.2 (connect the oscilloscope to pin A0 of the development
board). In this figure, the horizontal axis was 500 microseconds/division, and the vertical
axis was 2 V/division. The waveform has an amplitude of 2 V and a period of 2 ms.

//---
// SQUARE WAVE WITH AMPLITUDE 2 V
// ==============================
//
// This program generates square wave with frequency 500 Hz and amplitude 2 V
//
// Author: Dogan Ibrahim
// File : Square2V
// Date : July, 2023
//--
unsigned long previousMillis = 0;
const long interval = 1;
bool flag = false;

void setup()

Mastering the Arduino Uno R4 - UK.indd 241Mastering the Arduino Uno R4 - UK.indd 241 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 242

{
}

void loop()
{
 unsigned long currentMillis = millis();
 if(currentMillis - previousMillis >= interval)
 {
 previousMillis = currentMillis;
 if(flag)
 {
 analogWrite(A0, 102);
 flag = false;
 }
 else
 {
 analogWrite(A0, 0);
 flag = true;
 }
 }
}

Figure 13.1: Program: Square2V.

Figure 13.2: Output waveform.

13.3 Generating sine wave – using the analogWave library
The analogWave library contains several functions and is used to generate various wave-
forms through the DAC. The waveform is being stored as samples in an array, and with
every loop of the sketch, you'll update the DACs output value to the next value in the array.
With predefined waveforms, the library is called as: analogWave wave(DAC). The follow-
ing functions are available:

Mastering the Arduino Uno R4 - UK.indd 242Mastering the Arduino Uno R4 - UK.indd 242 13-09-2023 11:1313-09-2023 11:13

Chapter 13 ● The Digital To Analog Converter (DAC)

● 243

•	begin(float freq_hz) e.g. wave.begin(100)	 - commence the output
•	freq(float freq_hz)	 - update the frequency
•	start()	 - start the generation of sample
•	stop()	 - stop the generation of sample
•	amplitude(float amplitude)	 - output multiplication, between 0 and 1
•	sine(float freq_hz) e.g. wave.sine(100)	 - sine wave
•	square(float freq_hz)	 - square wave
•	saw(float freq_hz)	 - sawtooth wave

Example projects are given in the next sections.

13.3.1 Project 2: Generate a sine wave
Description: In this project, you and your R4 generate a sine wave with a frequency of 1
kHz and an amplitude of 2.5 V.

Program listing: Figure 13.3 shows the program listing (Program: Sinewave). At the be-
ginning of the program, the frequency is set to 1 kHz (1000 Hz). The amplitude multiplier is
set to 0.5 so that the peak-to-peak amplitude of the generated waveform will be 5 × 0.5 =
2.5 V (notice that the DAC reference voltage is not exactly +5 V, it is slightly lower). Inside
the setup() function, the amplitude is set and waveform is generated. Figure 13.4 shows
the waveform on the digital oscilloscope. In this figure, the vertical scale was 1 V/division,
and the horizontal scale was 500 μs/division. The frequency is 1 kHz, and the amplitude is
about 2.5 V.

//---
// GENERATE SINE WAVE
// ==================
//
// This program generates sine wave with frequency 1 kHz and amplitude 2.5 V
//
// Author: Dogan Ibrahim
// File : Sinewave
// Date : July, 2023
//--
#include "analogWave.h"
analogWave wave(DAC);

int freq = 1000; // Freq = 1 kHz
float amplitude = 0.5; // Amplitude multiplier

void setup()
{
 wave.amplitude(amplitude); // Set Amplitude
 wave.sine(freq); // Generate sine wave
}

Mastering the Arduino Uno R4 - UK.indd 243Mastering the Arduino Uno R4 - UK.indd 243 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 244

void loop()
{
}

Figure 13.3: Program: Sinewave.

Figure 13.4: Output waveform.

Notice that in the above program, the default DAC resolution of 8 bits was used. The reso-
lution can be changed to 12 bits to improve the waveform:

void setup()
{
 	 analogWriteResolution(12); 	 // Change to 12-bits
 	 wave.amplitude(amplitude); 	 // Set Amplitude
 	 wave.sine(freq); 	 // Generate sine wave
}

13.3.2 Project 3: Sine wave sweep frequency generator
Description: In this project, a sine wave is generated with the frequency changing from
100 Hz to 10 kHz in steps of 100 Hz, every second. The amplitude of the waveform is 5 V
by default.

Program listing: Figure 13.5 shows the program listing (Program: Sweep). Here, the
start frequency is 100 Hz and the frequency is increased in steps of 100 Hz every second
inside the loop() function. When the frequency reaches 10 kHz, it stays there for 5 seconds
and then the process repeats.

Mastering the Arduino Uno R4 - UK.indd 244Mastering the Arduino Uno R4 - UK.indd 244 13-09-2023 11:1313-09-2023 11:13

Chapter 13 ● The Digital To Analog Converter (DAC)

● 245

//---
// SINE WAVE SWEEP FREQUENCY
// =========================
//
// This program generates sine wave starting from 100 Hz to 10 kHz in steps
// of 100 Hz. The frequncy is incremented every second. The wave amplitude
// is default 5 V
//
// Author: Dogan Ibrahim
// File : Sweep
// Date : July, 2023
//--
#include "analogWave.h"
analogWave wave(DAC);

int StartFreq = 100; // Start freq = 100 Hz
int EndFreq = 10000; // End freq = 10 kHz
int Step = 100; // Step = 100 Hz
int freq = StartFreq;

void setup()
{
 wave.sine(StartFreq); // Start with StartFreq
}

void loop()
{
 freq = freq + Step; // Increment freq
 delay(1000);

 if(freq > EndFreq) // Reached end?
 {
 freq = StartFreq; // Back to start
 delay(5000);
 }
 wave.freq(freq); // With new freq
}

Figure 13.5: Program: Sweep.

13.3.3 Project 4: Generate sine wave whose frequency changes with
potentiometer
Description: In this program, a potentiometer is connected to the Uno R4's analog pin A5.
A sine wave is generated, and its frequency changes as the potentiometer arm is moved.

Mastering the Arduino Uno R4 - UK.indd 245Mastering the Arduino Uno R4 - UK.indd 245 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 246

Circuit diagram: Figure 13.6 shows the circuit diagram of the project. The arm of the
potentiometer is connected to the analog input A5 of the development board.

Figure 13.6: Circuit diagram of the project.

Program listing: Figure 13.7 shows the program listing (Program: DACPot). The ADC
and DAC are left with their default resolutions. Inside the program loop, the value of the
potentiometer is read and mapped to 0 to 10000 Hz. The current frequency is then gener-
ated at port A0 (DAC) and is also displayed on the Serial Monitor.

//---
// SINE WAVE WITH A POTENTIOMETER
// ==============================
//
// This program generates sine wave where a potentiometer is used to change
// the frequency. The wave amplitude is default 5 V
//
// Author: Dogan Ibrahim
// File : DACPot
// Date : July, 2023
//--
#include “analogWave.h”
analogWave wave(DAC);

int freq = 100; // Start freq = 100 Hz

void setup()
{
 Serial.begin(9600);
 delay(5000);
 pinMode(A5, INPUT); // Analog input
 wave.sine(freq); // Start with StartFreq
}

void loop()
{

Mastering the Arduino Uno R4 - UK.indd 246Mastering the Arduino Uno R4 - UK.indd 246 13-09-2023 11:1313-09-2023 11:13

Chapter 13 ● The Digital To Analog Converter (DAC)

● 247

 freq = map(analogRead(A5), 0, 1024, 0, 10000);
 Serial.println(“Frequency is: “ + String(freq) + “ Hz”);
 wave.freq(freq);
 delay(1000);
}

Figure 13.7: Program: DACPot.

13.3.4 Project 5: Generate a square wave with frequency of 1 kHz and
amplitude of 1 V
Description: In this project, a 1-kHz square wave is generated with an amplitude of 1 V.

Program listing: Figure 13.8 shows the program listing (Program: Square1V). The am-
plitude is set to 1 V by using a 0.2 output level multiplier. The default DAC resolution of 8
bits is retained in this project.

//---
// GENERATE SQUARE WAVE
// ====================
//
// This program generates square wave with frequency 1 kHz and amplitude 1 V
//
// Author: Dogan Ibrahim
// File : Square1V
// Date : July, 2023
//--
#include "analogWave.h"
analogWave wave(DAC);

int freq = 1000; // Freq = 1 kHz
float amplitude = 0.2; // Amplitude multiplier

void setup()
{
 wave.amplitude(amplitude); // Set Amplitude
 wave.square(freq); // Generate square wave
}

void loop()
{
}

Figure 13.8: Program: Square1V.

Suggestion: A simple decent quality melody maker can be constructed by using the DAC
together with an audio amplifier like the LM386 IC and a small 4–8 ohm speaker.

Mastering the Arduino Uno R4 - UK.indd 247Mastering the Arduino Uno R4 - UK.indd 247 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 248

Chapter 14 ● �Using the EEPROM, the Human Interface
Device, and PWM

14.1 Overview
Both versions of the Arduino Uno R4 support some additional features, such as EEPROM
memory and a Human Interface Device (HID). In this chapter, these features are described
with simple examples.

14.2 The EEPROM memory
The EEPROM is useful when it is required to store non-volatile data such as passwords, ini-
tialization data, etc. Some of the commonly used EEPROM library functions are as follows:

EEPROM.read(int address)

This function allows you to read a single byte of data from the EEPROM. An unsigned char
is returned.

EEPROM.write(int address, unsigned char value)

This function allows you to write a single byte of data to the EEPROM. The first parameter is
the address to be written, and the second parameter is the data to be written. The function
does not return any data.

EEPROM.length()

This function returns an unsigned int containing the number of cells in the EEPROM.

The following program code will write byte 0x11 and byte 0x22 to EEPROM addresses 0
and 1 respectively:

#include <EEPROM.h>
int addr = 0;
EEPROM.write(addr, 0x11);
addr++;
EEPROM.write(addr, 0x22);

The following program code will read the byte at EEPROM address 0 and then display it on
the Serial Monitor. The number is displayed in decimal together with its address:

#include <EEPROM.h>
Serial.begin(9600);
int addr = 0;
byte value;
value = EEPROM.read(addr);
Serial.print(addr);
Serial.print("\t");

Mastering the Arduino Uno R4 - UK.indd 248Mastering the Arduino Uno R4 - UK.indd 248 13-09-2023 11:1313-09-2023 11:13

Chapter 14 ● Using the EEPROM, the Human Interface Device, and PWM

● 249

Serial.print(value, DEC);
Serial.println();

14.3 Human Interface Device (HID)
The HID can be used to emulate the mouse/keyboard using the Arduino Uno R4 Minima
board in conjunction with the keyboard and mouse APIs. HIDs are devices designed for
humans (keyboards, mice, game controllers, etc.), that frequently send data to a computer
over USB. When you press a key on a keyboard, you send data to a computer, which reads
it and in turn activates the corresponding key. To turn your board into an HID, you can use
the keyboard/mouse API built into the core. This chapter is an introduction to HID and fur-
ther information and examples on HID can be obtained from the following Arduino tutorial:

	 https://docs.arduino.cc/tutorials/uno-r4-minima/usb-hid

Some of the keyboard functions include begin(), press() (pressing a key), and release-
All() (releasing keys). An example program code is given below for the keyboard. This code
emulates a keypress and key release. The following code prints the letter x every second:

#include <Keyboard.h>
void setup()
{
	 Keyboard.begin()
	 delay(1000);
}

void loop()
{
	 Keyboard.press('x');
	 delay(100);
	 Keyboard.releaseAll();
	 delay(1000);
}

Some of the mouse functions are: begin(), and move(xDistance, yDistance),
press(MOUSE_LEFT), release(MOUSE_LEFT). As an example, the following example
moves both axes of the mouse just slightly (20 points), back and forth every second:

#include <Mouse.h>
void setup()
{
	 Mouse.begin();
delay(1000);
}

void loop()
{

Mastering the Arduino Uno R4 - UK.indd 249Mastering the Arduino Uno R4 - UK.indd 249 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 250

	 Mouse.move(20, 20);
	 delay(1000);
	 Mouse.move(-20, -20);
	 delay(1000);
}

An example project is given below using the Keyboard library.

14.4 Project 1: Keyboard control to launch Windows programs
Description: This project uses the Keyboard library. Three buttons are connected to the
development board, named Notepad, Word, and Excel. Pressing the Notepad button
starts the Notepad program, pressing the Word button starts the Winword program, and
pressing the Excel button starts the Excel program. The aim of this project is to show how
the Keyboard library can be utilized.

Block diagram: Figure 14.1 shows the block diagram of the project.

Figure 14.1: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 14.2 Buttons Notepad, Word,
and Excel are connected to digital pins 2, 3, and 4 respectively.

Mastering the Arduino Uno R4 - UK.indd 250Mastering the Arduino Uno R4 - UK.indd 250 13-09-2023 11:1313-09-2023 11:13

Chapter 14 ● Using the EEPROM, the Human Interface Device, and PWM

● 251

Figure 14.2: Circuit diagram.

Program listing: Figure 14.3 shows the program listing (Program: keybd). At the begin-
ning of the program, the Keyboard library header file is included, and buttons are assigned
to digital ports. Inside the setup() function, the buttons are configured as inputs and the
input pull-up resistors are enabled so that the default state of the buttons is at logic HIGH.
The state of a button goes to logic LOW when pressed. Inside the main program loop, the
state of the buttons is checked. If the button Notepad is pressed, then the variable Mode
is set to 1. If the button Word is pressed, then the variable Mode is set to 2, and if the
button Excel is pressed, then the variable Mode is set to 3. The program then sends the
left Windows key to the PC, followed by letter r (Run) and then the name of the program
to run. For example, to run the Notepad program, the keystrokes are Windows key,
followed by r key, followed by the word Notepad and then the Enter (Return) key. So, for
example, pressing the Excel button launches Excel to run within Windows.

//--
// KEYBOARD CONTROL TO START WINDOWS PROGRAMS
// ==
//
// Three buttons are used in this program named Notepad, Word, and Excel.
// Pressing button Notepad starts notepad, pressing Word starts Winword,
// and pressing Excel starts the Excel program
//
// Author: Dogan Ibrahim
// File : Keybd
// Date : July, 2023
//---
#include <Keyboard.h>

#define ButtonNotePad 2 // Notepad button
#define ButtonWord 3 // Word button

Mastering the Arduino Uno R4 - UK.indd 251Mastering the Arduino Uno R4 - UK.indd 251 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 252

#define ButtonExcel 4 // Excel button
int Mode;

void setup()
{
 pinMode(ButtonNotePad, INPUT_PULLUP); // Default 1
 pinMode(ButtonWord, INPUT_PULLUP); // Default 1
 pinMode(ButtonExcel, INPUT_PULLUP); // Default 1
 Keyboard.begin(); // Initialize library
}

void loop()
{
 Mode = 0;

 while(Mode == 0)
 {
 if(digitalRead(ButtonNotePad) == LOW) Mode = 1; // Notepad pressed
 if(digitalRead(ButtonWord) == LOW) Mode = 2; // Word pressed
 if(digitalRead(ButtonExcel) == LOW) Mode = 3; // Excel pressed
 }

 Keyboard.press(KEY_LEFT_GUI); // Windows key
 Keyboard.press('r'); // Run
 delay(100);
 Keyboard.releaseAll();
 delay(1000);
 if(digitalRead(Mode) == 1) Keyboard.print("Notepad");
 if(digitalRead(Mode) == 2) Keyboard.print("Winword");
 if(digitalRead(Mode) == 1) Keyboard.print("Excel");
 Keyboard.press(KEY_RETURN);
 delay(100);
 Keyboard.releaseAll();
 }

Figure 14.3: Program: keybd.

Figure 14.4 shows the project built on a breadboard and the buttons connected to the de-
velopment board using jumper wires.

Mastering the Arduino Uno R4 - UK.indd 252Mastering the Arduino Uno R4 - UK.indd 252 13-09-2023 11:1313-09-2023 11:13

Chapter 14 ● Using the EEPROM, the Human Interface Device, and PWM

● 253

Figure 14.4: Construction of the project.

Some key names are given below. The full list can be obtained from the website:

	 https://github.com/arduino-libraries/Keyboard/blob/master/src/Keyboard.h

KEY_LEFT_CTRL		 left CTRL key
KEY_LEFT_SHIFT		 left SHIFT key
KEY_LEFT_ALT		 left ALT key
KEY_LEFT_GUI		 left WINDOWS key
KEY_RIGHT_CTRL		 right CTRL key
KEY_RIGHT_SHIFT		 right SHIFT key
KEY_RIGHT_ALT		 right ALT key
KEY_RIGHT_GUI		 right WINDOWS key
KEY_UP_ARROW		 UP arrow key
KEY_DOWN_ARROW		 DOWN arrow key
KEY_LEFT_ARROW		 LEFT arrow key
KEY_RIGHT_ARROW		 RIGHT arrow key
KEY_RETURN		 RETURN (ENTER) key
KEY_ESC			 ESC key
KEY_INSERT			 INSERT key
KEY_DELETE			 DELETE key

14.5 The Pulse Width Modulation (PWM)
Pulse Width Modulation (PWM) is a commonly used technique for controlling the power
delivered to analog loads using digital waveforms. Although analog voltages (and currents)
can be used to control the delivered power, they have several drawbacks. Controlling large
analog loads requires large voltages and currents that cannot easily be obtained using
standard analog circuits and DACs. Precision analog circuits can be heavy, large, expensive,
and sensitive to noise. By using the PWM technique, the average value of voltage (and cur-
rent) fed to a load is controlled by switching the supply voltage ON and OFF at a fast rate.
The longer the power on time, the higher the voltage supplied to the load.

Mastering the Arduino Uno R4 - UK.indd 253Mastering the Arduino Uno R4 - UK.indd 253 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 254

Figure 14.5 shows a typical PWM waveform where the signal is basically a repetitive posi-
tive pulse, having the period T, ON time TON and OFF time of T – TON seconds. The min-
imum and maximum values of the voltage supplied to the load are 0 and VP respectively.
The PWM switching frequency is usually set to be very high (usually in the order of several
kHz) so that it does not affect the load that uses the power. The main advantage of PWM is
that the load is operated efficiently since the power loss in the switching device is very low.
When the switch is ON there is practically no voltage drop across the switch, and when the
switch is OFF there is no current supplied to the load.

Figure 14.5: PWM waveform.

The duty cycle (or D) of a PWM waveform is defined as the ratio of the ON time to its period.
Expressed mathematically,

	 Duty Cycle (D) = TON / T

The duty cycle is usually expressed as a percentage and therefore,

	 D = (TON / TOFF) × 100 %

By varying the duty cycle between 0% and 100% you can effectively control the average
voltage supplied to the load between 0 and Vp.

The average value of the voltage applied to the load can be calculated by considering a
general PWM waveform shown in Figure 14.6. The average value A of waveform f(t) with
period T and peak value ymax and minimum value ymin is calculated as:

	

or

	

Mastering the Arduino Uno R4 - UK.indd 254Mastering the Arduino Uno R4 - UK.indd 254 13-09-2023 11:1313-09-2023 11:13

Chapter 14 ● Using the EEPROM, the Human Interface Device, and PWM

● 255

In a PWM waveform ymin = 0 and the above equation becomes

	

or	

As can be seen from the above equation, the average value of the voltage supplied to the
load is directly proportional to the duty cycle of the PWM waveform, and by varying the
duty cycle you control the average load voltage. Figure 14.6 shows the average voltage for
different values of the duty cycle.

Figure 14.6: Average voltage (shown as dashed line) supplied to a load.

It is interesting to notice that with correct low-pass filtering, the PWM can be used as a DAC
if the MCU does not have a DAC channel. By varying the duty cycle, you can effectively vary
the average analog voltage supplied to the load.

14.5.1 PWM channels of the Arduino Uno R4
The PWM channels on the Arduino Uno R4 are identified by the ~ (tilde) sign. These chan-
nels are: D3, D5, D6, D9, D10, D11. The PWM channels are configured by specifying the
required frequency and duty cycle. The duty cycle can be set between 0% and 100% by
setting it from 0 to 255. An example project is given in the next section to show how the
PWM can be programmed.

14.5.2 Project 2: LED dimming using PWM
Description: In this project, an external LED is connected to port D3 through a 1-kΩ cur-
rent-limiting resistor. The LED brightness is changed using PWM.

Program listing: Figure 14.7 shows the program listing (Program: LEDDim). At the be-
ginning of the program, the brightness (variable brightness) and amount of fading (varia-
ble amount) are both set to 0 and the LED is configured as an output. Inside the program
loop, a PWM waveform is sent to the LED with the duty cycle set to brightness, and the
brightness is increased by the amount. When brightness reaches the value 255 (maxi-
mum duty cycle), the amount is subtracted from the brightness. This process continues
after a 50-ms delay and until stopped by the user. Try to change the delay to see the
change in the speed of fading.

Mastering the Arduino Uno R4 - UK.indd 255Mastering the Arduino Uno R4 - UK.indd 255 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 256

//--
// LED DIM - USING PWM
// ===================
//
// In this program an LED is connected to port 3 and it is dimmed using PWM
//
// Author: Dogan Ibrahim
// File : LEDDim
// Date : July, 2023
//---
#define LED 3 // LED at port 3
int brightness = 0;
int amount = 10;

void setup()
{
 pinMode(LED, OUTPUT); // LED is output
}

void loop()
{
 analogWrite(LED, brightness);
 brightness = brightness + amount;
 if(brightness <= 0 || brightness >= 255) amount = -amount;
 delay(50);
}

Figure 14.7: Program: LEDDim.

Mastering the Arduino Uno R4 - UK.indd 256Mastering the Arduino Uno R4 - UK.indd 256 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 257

Chapter 15 ● The Arduino Uno R4 WiFi

15.1 Overview
The Arduino Uno R4 WiFi (Figure 15.1) is the WiFi version of the Uno R4. It offers some
features not found on the Arduino Uno R4 Minima.

Compared to the Arduino Uno R4 Minima , the features only available on the Arduino Uno
R4 WiFi can be summarized as

•	WiFi 2.4 GHz, 802.11b/g/n, up to 150 Mbits/s
•	Bluetooth LE and Bluetooth 5
•	Built-in antenna
•	12×8 LED matrix
•	Connector to add an external battery to the real-time clock
•	Qwicc-style connector for 3.3-V level I2C (additional channel from the MCU)
•	Secondary 240 MHz, 3.3-V dual-core 32-bit Espressif ESP32-S3-MINI-1-N8

processor
•	384 Kbytes ROM
•	512 Kbytes RAM
•	On-board programmable header
•	VRTC pin for external RTC battery

Figure 15.1: Arduino Uno R4 WiFi.

Although the WiFi and Minima share the same pinout, some of the special pin functions are
different (e.g., the CAN bus pins). The Uno R4 Minima is programmed directly over USB,
while on the WiFi version the MCU is programmed via the ESP32 processor (the USB bus is
connected directly to ESP32).

Mastering the Arduino Uno R4 - UK.indd 257Mastering the Arduino Uno R4 - UK.indd 257 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 258

Also, on the Uno R4 Minima the MCU debug is brought out to the SWD connector to connect
to an external debugger. On the Uno R4 WiFi, the MCU debug port is taken to the ESP32
processor. The Uno R4 WiFi includes an error-checking mechanism that can detect run-time
errors and crashes, and it can provide detailed explanations about the line of code causing
the crash.

By default, the ESP32-S3 module on-board the UNO R4 WiFi acts as a Serial Bridge, han-
dling the connection to your computer. It also handles the rebooting of the main MCU, the
Renesas RA4M1 when needed, for example, when receiving a new sketch and resetting.
The ESP32 also exposes the ESP32's data lines, enabling you to program the ESP32 direct-
ly. These data lines are exposed by 3×2 header at the top of the board, or through pads at
the bottom side. The USB data lines are routed through switches. By default, these switch-
es are set for communication to go via the ESP32 module. This, however, can be modified
by pulling pin D40 HIGH using the digitalWrite() statement. While D40 is HIGH, the
RA4M1 is connected to the USB Serial port, and while D40 is LOW, the ESP32 is connected,
like the default configuration.

The built-in antenna is shared between WiFi and Bluetooth, meaning you cannot use WiFi
and Bluetooth at the same time.

Further details on the Arduino Uno R4 WiFi are available at the following Arduino link:

	 https://docs.arduino.cc/tutorials/uno-r4-wifi/cheat-sheet

Figure 15.2 shows the pin layout of the Arduino Uno R4 WiFi. The component layout on the
board is shown in Figure 15.3 with Table 15.1 describing the components on the board.
Figure 15.2, Figure 15.3, and Table 5.1 are taken from the Arduino Product Reference
Manual: SKU: ABX00087.

Mastering the Arduino Uno R4 - UK.indd 258Mastering the Arduino Uno R4 - UK.indd 258 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 259

Figure 15.2: Arduino Uno R4 WiFi pin layout.

Figure 15.3: Arduino Uno R4 WiFi component layout.

Mastering the Arduino Uno R4 - UK.indd 259Mastering the Arduino Uno R4 - UK.indd 259 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 260

Table 15.1: Description of components on the board.

Example projects are given in this chapter on using some of the features of the Uno R4 WiFi
development board.

15.2 The LED matrix
The LED matrix is organized as 12×8 LEDs and can be used to display graphics, animations,
or play games. Two methods are suggested for programming the LED matrix. Both meth-
ods are described with projects in this section.

15.2.1 Project 1: Using LED matrix 1 — creating a large + shape
Description: In this project, you will create a large + shape on the LED matrix. The aim of
this project is to show how a shape can be created on the LED matrix.

Program listing: The LED Matrix library works on the principle of creating a frame (an
image), and then loading it into a buffer that displays the frame. In order to control the LED
matrix, you need a space in memory sized at least 96 bits.

The required image is created as a two-dimensional array of bytes. For the + shape, the
array looks as in Figure 15.4:

Mastering the Arduino Uno R4 - UK.indd 260Mastering the Arduino Uno R4 - UK.indd 260 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 261

Figure 15.4: The array of bytes.

The image can easily be seen in the frame of the array as the ones form the required im-
age. You will then have to call function renderBitmap(). Figure 15.5 shows the program
listing (Program: MatrixPlus). At the beginning of the program, the LED matrix header file
is included and a matrix object is created. Inside the setup() function, the LED matrix is
started and the frame is defined and rendered.

//---
// USING THE LED MATRIX - DISPLAYING + SIGN
// ==
//
// This program displays a + sign on the LED matrix
//
// Author: Dogan Ibrahim
// File : MatrixPlus
// Date : July, 2023
//--
#include "Arduino_LED_Matrix.h"
ArduinoLEDMatrix matrix;

void setup()
{
 matrix.begin();

 byte frame[8][12] =
 {
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }
 };

 matrix.renderBitmap(frame, 8, 12);

Mastering the Arduino Uno R4 - UK.indd 261Mastering the Arduino Uno R4 - UK.indd 261 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 262

}

void loop()
{
}

Figure 15.5: Program: MatrixPlus.

Figure 15.6 shows the display.

Figure 15.6: The display.

Notice that you could set all the bits in the frame to 0 and then set the required bits to 1
using the following statements (the array indexing starts from 0):

	 frame[1, 5] = 1; and so on for all the bits to be set to 1s.
	 ……………………
	 …………………….

	 matrix.renderBitmap(frame, 8, 12);

An example project is given below which sets the required bits in the frame.

15.2.2 Project 2: Creating images by setting bits
Description: In this project, two simple images are created by setting the bits in frames
having all 0s.

Program listing: Two images created in this project: an image where the LED corners are
set and an image where the center LEDs are set. Figure 15.7 shows a frame with all 0s.

Mastering the Arduino Uno R4 - UK.indd 262Mastering the Arduino Uno R4 - UK.indd 262 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 263

Figure 15.7: Frame with all 0s.

Notice that you could have created a frame with all 0s with the following statement, but it
may be useful to visualize the frame as an 8×12 matrix:

	 uint8_t frame[8][12] = {0};

The images corners and center are set in two functions as follows:

void corners()
{
	 frame[0][0] = 1;
	 frame[0][11] = 1;
	 frame[7][0] = 1;
	 frame[7][11] = 1;
}

and
void center()
{
	 frame[3][5] = 1;
	 frame[3][6] = 1;
	 frame[4][5] = 1;
	 frame[4][6] = 1;
}

The program calls the functions and then renders the images. Figure 15.8 shows the pro-
gram listing (Program: SimpleImages).

//---
// CREATE SIMLE IMAGES
// ===================
//
// This program displays two simple images
//
// Author: Dogan Ibrahim
// File : SimpleImages
// Date : July, 2023

Mastering the Arduino Uno R4 - UK.indd 263Mastering the Arduino Uno R4 - UK.indd 263 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 264

//--
#include "Arduino_LED_Matrix.h"
ArduinoLEDMatrix matrix;

void setup()
{
 matrix.begin();
}

 //
 // Empty frame array
 //
 uint8_t frame[8][12] =
 {
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
 };

//
// Image corners
//
void corners()
{
	 frame[0][0] = 1;
	 frame[0][11] = 1;
	 frame[7][0] = 1;
	 frame[7][11] = 1;
}

//
// Image center
//
void center()
{
	 frame[3][5] = 1;
	 frame[3][6] = 1;
	 frame[4][5] = 1;
	 frame[4][6] = 1;
}

Mastering the Arduino Uno R4 - UK.indd 264Mastering the Arduino Uno R4 - UK.indd 264 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 265

//
// Display the two images for 2 seconds each
//
void loop()
{
 corners();
 matrix.renderBitmap(frame, 8, 12);
 delay(2000);

 center();
 matrix.renderBitmap(frame, 8, 12);
 delay(2000);
}

Figure 15.8: Program: SimpleImages.

Figure 15.9 shows the images on the LED matrix.

Figure 15.9: Images.

15.2.3 Project 3: Using LED matrix 2 — creating a large + shape
Description: In this project, a simpler method is used to create an image on the LED ma-
trix. Here again, a large + shape is created on the LED matrix.

Program listing: In this project, the Arduino LED Matrix Tool is used. This tool is avail-
able at the following link:

	 https://docs.arduino.cc/tutorials/uno-r4-wifi/led-matrix#animation-generation

Mastering the Arduino Uno R4 - UK.indd 265Mastering the Arduino Uno R4 - UK.indd 265 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 266

Click on the given link to display the tool. This is shown in Figure 15.10. Use your mouse to
create the required shape by clicking on the empty cells. Don't worry if you make a mistake,
as you can erase the contents of a cell using the eraser tool. Once you have finished, click
the button at the top right-hand corner of the screen (</>) to save the image. For exam-
ple, give it the name NewImage. The file is given the extension .h and is saved in your
Downloads folder with the contents as shown below:

const uint32_t NewImage[][4] = {
	 {
		 0x4004004,
		 0xfff0400,
		 0x40040040,
		 66
	 }
};

Since there is no animation in this project, the file has been modified as follows:

const uint32_t NewImage[] = {
		 0x4004004,
		 0xfff0400,
		 0x40040040
};

Figure 15.10 Creating a shape using the LED Matrix Tool

Now you have to move this file to the folder where your sketch (program file) is and in-
clude it at the top of your program. You can display the image by calling the statement
matrix.loadFrame(NewImage). Figure 15.11 shows the program listing (Program: Ma-
trixPlus2). The image is displayed in Figure 15.6.

//--
// CREATE a + IMAGE USING THE LED MATRIX TOOL
// ==
//
// This program displays the + image on the LED matrix
//
// Author: Dogan Ibrahim
// File : MatrixPlus2
// Date : July, 2023
//---
#include "Arduino_LED_Matrix.h"
#include "NewImage.h"
ArduinoLEDMatrix matrix;

void setup()

Mastering the Arduino Uno R4 - UK.indd 266Mastering the Arduino Uno R4 - UK.indd 266 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 267

{
 matrix.begin();
}

//
// Display the image
//
void loop()
{
 matrix.loadFrame(NewImage);
 while(1);
}

Figure 15.11: Program: MatrixPlus2.

15.2.4 Project 4: Animation — displaying a word
Description: In this project, you create a simple animation. Here, the word ELEKTOR is
displayed on the LED matrix.

Program listing: In this project, the LED Matrix Tool is used to create the letters to be
animated. Figure 15.12 shows the completed images in the Tool. Notice that the numbers
at the bottom of the images represent in milliseconds for how long the image will be dis-
played before moving to the next image. Here, each image is displayed for 1000 ms and
the last image for 3000 ms. You can click the arrow icon at the top of the Tool to see the
animation. Save the images under a name (e.g., MyElektor). The file MyElektor.h will be
saved in your Downloads folder. Figure 15.13 shows the contents of this file.

Figure 15.12: Completed images.

const uint32_t MyElektor[][4] = {
	 {
		 0xf0080,
		 0xf00800f,
		 0x0,
		 1000
	 },

Mastering the Arduino Uno R4 - UK.indd 267Mastering the Arduino Uno R4 - UK.indd 267 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 268

	 {
		 0x80080,
		 0x800800f,
		 0x0,
		 1000
	 },
	 {
		 0xf0080,
		 0xf00800f,
		 0x0,
		 1000
	 },
	 {
		 0x900a0,
		 0xc00a009,
		 0x0,
		 1000
	 },
	 {
		 0xf8020,
		 0x2002002,
		 0x0,
		 1000
	 },
	 {
		 0xf0090,
		 0x900900f,
		 0x0,
		 1000
	 },
	 {
		 0xc00a0,
		 0xe00a009,
		 0x0,
		 3000
	 }
};

Figure 15.13: Contents of the animation file.

Figure 15.14 shows the program listing (Program: Animate). Function Autoscroll() has
the frame scroll time in milliseconds so that there is no need to call the next() function.
Function play() starts playing the loaded function.

Mastering the Arduino Uno R4 - UK.indd 268Mastering the Arduino Uno R4 - UK.indd 268 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 269

//--
// ANIMATION - SCROLLING TEXT
// ==========================
//
// This program scrolls the word ELEKTOR on the LED matrix
//
// Author: Dogan Ibrahim
// File : Animate
// Date : July, 2023
//---
#include "Arduino_LED_Matrix.h"
#include "MyElektor.h"
ArduinoLEDMatrix matrix;

void setup()
{
 matrix.begin();
 matrix.loadSequence(MyElektor);
 matrix.begin();
 matrix.play(true);
}

void loop()
{
}

Figure 15.14: Program: Animate.

15.3 Using the WiFi
Perhaps one of the key features of the Arduino Uno R4 WiFi board is its WiFi support. Be-
fore using the on-board WiFi, you have to specify the name (SSID) and password of your
WiFi router. The header file WiFiS3.h must be included at the top of your program. In this
section, a WiFi-based project is given to show how WiFi can be programmed.

Before going into the details of WiFi programming, it is worthwhile to review some of the
WiFi programming terminology.

15.3.1 UDP and TCP
Communication over a WiFi link is in the form of a client and server, and sockets are used
to send and receive data packets. The server side usually waits for a connection from the
clients and once a connection is made two-way communication can start. Two protocols are
mainly used for sending and receiving data packets over a WiFi link: UDP and TCP. TCP is
a connection-based protocol that guarantees the delivery of packets. Packets are given se-
quence numbers and the receipt of all the packets is acknowledged to avoid them arriving
in the wrong order. As a result of this confirmation, TCP is usually slow, but it is dependable
as it guarantees the delivery of packets. UDP, on the other hand, is not connection-based.

Mastering the Arduino Uno R4 - UK.indd 269Mastering the Arduino Uno R4 - UK.indd 269 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 270

Packets do not have sequence numbers and as a result of this, there is no guarantee that
the packets will arrive at their destinations, or they may arrive in the wrong sequence. UDP
has less overhead than TCP and as a result it is faster. Table 15.2 lists some of the differ-
ences between the TCP and UDP protocols.

TCP UDP

Packets have sequence numbers
and delivery of every packet is
acknowledged

No delivery acknowledgement

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires less resources

Connection based Not connection based

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 15.2: TCP and UDP packet communications.

15.3.2	UDP communication
Figure 15.15 shows the UDP communication over a Wi-Fi link:

Server

1.	 Create a UDP socket.
2.	 Bind the socket to the server address.
3.	 Wait until the datagram packet arrives from the client.
4.	 Process the datagram packet.
5.	 Send a reply to the client or close the socket.
6.	 Go back to Step 3 (if not closed).

Client

1.	 Create a UDP socket (and optionally Bind).
2.	 Send a message to the server.
3.	 Wait until a response from the server is received.
4.	 Process reply.
5.	 Go back to step 2 or close the socket.

Mastering the Arduino Uno R4 - UK.indd 270Mastering the Arduino Uno R4 - UK.indd 270 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 271

Figure 15.15: UDP communication.

15.3.3 TCP communication
Figure 15.16 shows the TCP communication over a Wi-Fi link:

Server

1.	 Create a UDP socket.
2.	 Bind the socket to the server address.
3.	 Listen for connections.
4.	 Accept connection.
5.	 Wait until the datagram packet arrives from the client.
6.	 Process the datagram packet.
7.	 Send a reply to the client or close the socket.
8.	 Go back to Step 3 (if not closed).

Client

1.	 Create a UDP socket.
2.	 Connect to the server.
3.	 Send a message to the server.
4.	 Wait until a response from the server is received.
5.	 Process reply.
6.	 Go back to step 2 or close the socket.

Mastering the Arduino Uno R4 - UK.indd 271Mastering the Arduino Uno R4 - UK.indd 271 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 272

Figure 15.16: TCP communication.

15.3.4	Project 5: Controlling the Arduino Uno R4 WiFi on-board LED
from a smartphone using UDP
Description: In this project, the on-board LED (at port 13) is turned ON and OFF by
sending commands ON and OFF respectively from an Android smartphone. The aim of this
project is to show how UDP can be programmed to send control messages over a network
and control a device. In this project, Arduino is the server, and the smartphone is the client.

Block diagram: Figure 15.17 shows the block diagram of the project.

Figure 15.17: Block diagram of the project.

Program Listing: Figure 15.18 shows the program listing (program: serverled). A sock-
et is created, and port 5000 is used. On-board LED is assigned to port 13, is configured
as output, and is turned OFF at the beginning of the program. Arduino Uno R4 WiFi then
connects to local WiFi and displays the SSID and IP address of the Arduino in the following
format:

Mastering the Arduino Uno R4 - UK.indd 272Mastering the Arduino Uno R4 - UK.indd 272 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 273

Attempting to connect to SSID: BTHomeSpot-XNH
SSID: BTHomeSpot-XNH
IP Address: 192.168.1.226

Where BTHomeSpot-XNH is the SSID name of the author's WiFi router and 192.168.1.226
is the IP address of the Arduino Uno R4 WiFi.

Inside the program loop, a packet is read over the WiFI and its contents are checked. If the
packet contains the text L=ON, then the LED is turned ON and a message is displayed on
the Serial Monitor. If, on the other hand, the text is L=OFF then the LED is turned OFF and
a message is displayed on the Serial Monitor.

//--
// WiFi BASED REMOTE CONTROL
// =========================
//
// In this program the on-board LED on the Arduino Uno R4 WiFi
// is controleld remotely from a smartphone over UDP link. The
// valid commands are: L=ON and L=OFF
//
// Author: Dogan Ibrahim
// File : serverled
// Date : July, 2023
//---
#include "WiFiS3.h"
#include "WiFiUDP.h"

int LED = 13; // On-board LED
int status = WL_IDLE_STATUS;

char ssid[] = "BTHomeSpot-XNH"; // Your WiFi SSID (name)
char pass[] = "49315vfg56b"; // Your WiFi password
const int Port = 5000; // Port number used
char Packet[80];
WiFiUDP udp;

//
// Display the SSID and IP address of the WiFi connected to (OPTIONAL)
//
void printWifiStatus()
{
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");

Mastering the Arduino Uno R4 - UK.indd 273Mastering the Arduino Uno R4 - UK.indd 273 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 274

 Serial.println(ip);
}

//
// COnfigure the on-board LED, turn it OFF, configure WiFi
//
void setup()
{
 pinMode(LED, OUTPUT); // LED is output
 digitalWrite(LED, LOW); // LED OFF at start
 Serial.begin(9600);
 delay(5000);

//
// Check for the WiFi module and stop if no WiFi module present
//
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }

//
// Attempt to connect to WiFi network
//
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 printWifiStatus(); // Optional
 udp.begin(Port); // listen to incoming packets
}

//
// This is the main program loop. Inside the main program we read
// UDP packets and then control the LED as requested. The format
// of the control commands are:
//
// L=ON or L=OFF
//
// Any other commands are simply ignored by the program
//
void loop()

Mastering the Arduino Uno R4 - UK.indd 274Mastering the Arduino Uno R4 - UK.indd 274 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 275

{
 int PacketSize = udp.parsePacket();
 if(PacketSize)
 {
 udp.read(Packet, PacketSize);

 if(Packet[1]=='=')
 {
 if(Packet[0]=='L')
 {
 if(Packet[2]=='O' && Packet[3]=='N')
 {
 digitalWrite(LED, HIGH);
 Serial.println("LED turned ON");
 }
 else if(Packet[2]=='O' && Packet[3]=='F' && Packet[4]=='F')
 {
 digitalWrite(LED, LOW);
 Serial.println("LED turned OFF");
 }
 }
 }
 }
}

Figure 15.18: Program: serverled.

The program can easily be tested using UDP apps on a smartphone. The author used the
Android app called UDP Sender by hastarin (Figure 15.19). The server program is start-
ed, then the client is started. Figure 15.20 shows sending the ON command to turn ON
the LED. Notice that the Arduino's IP address and the used port number are entered on
the apps.

Figure 15.19: UDP Sender apps.

Mastering the Arduino Uno R4 - UK.indd 275Mastering the Arduino Uno R4 - UK.indd 275 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 276

Figure 15.20: Command sent to turn ON the LED.

15.4 Bluetooth
The Arduino Uno R4 WiFi board has built-in Bluetooth 5 and Bluetooth LE hardware support,
thus enabling communication with both old and new Bluetooth phones, tablets, and PCs.

Table 15.3 shows a comparison of classical Bluetooth and Bluetooth BLE. Classical Blue-
tooth has the following features:

•	Multiple connections
•	Up to 3 Mb/s data rate
•	Up to 79 channels
•	Continuous data streaming
•	Device discovery
•	Asynchronous data communication
•	Master/slave Switch
•	Adaptive frequency hopping
•	Authentication and encryption
•	Secure pairing
•	Sniff mode
•	Point-to-point network topology

Bluetooth BLE has the following features:

•	Multiple connections
•	Up to 2 Mb/s data rate
•	Up to 40 channels
•	Short burst data transmission
•	Scanning
•	Asynchronous data communication
•	Data length extension
•	Connection parameter update
•	Point-to-point, broadcast, and mesh network topologies

Mastering the Arduino Uno R4 - UK.indd 276Mastering the Arduino Uno R4 - UK.indd 276 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 277

Table 15.3: Comparison of classical Bluetooth and Bluetooth BLE
(Source: Bluetooth.com).

15.4.1 Bluetooth BLE
Bluetooth Low Energy (BLE) has been developed mainly for battery-operated short-dis-
tance communications and it consumes less power than classical Bluetooth. BLE is normally
in sleep mode except when a connection is initiated and as a result of this feature, it is
suitable for applications that require to exchange tiny amounts of data at regular intervals,
such as in sending/receiving weather data, in healthcare, security, in home automation, in
IoT applications, etc.

In Bluetooth BLE applications, you have a server and a client. In applications that you are
interested in here, ESP32 acts as the server, and the PC or a mobile phone act as client,
although this can be changed if required.

The server-client communication is normally done using a point-to-point protocol where
the data exchange takes place as follows:

•	The server makes itself known to nearby Bluetooth BLE client devices.
•	The client devices scan their surroundings and when they find the server that

they are looking for they establish a connection to the server.
•	The client device listens for incoming data from the server.

Mastering the Arduino Uno R4 - UK.indd 277Mastering the Arduino Uno R4 - UK.indd 277 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 278

Other modes of Bluetooth BLE communication are Broadcast and Mesh. In Broadcast
mode, the server broadcasts data to a number of connected client devices. In Mesh mode,
all the BLE devices are connected to each other, and they can exchange data. In this chap-
ter, you will be developing projects using the point-to-point protocol.

15.4.2 Bluetooth BLE Software Model
Bluetooth BLE devices use the Generic Attributes Profile (GATT) which defines the way that
two BLE devices can exchange data. GATT is a hierarchical data structure. As shown in
Figure 15.21 GATT hierarchy consists of the Profile, Service, and Characteristics. At the top
level, you have the Profile which consists of one or more Services. A Service consists of one
or more Characteristics, and they can make references to other services. A Characteristic
contains the actual data and consists of Properties, Values, and Descriptors.

Every Service, Characteristic, and Descriptor in a Profile has unique 16-byte (128-bits)
Universally Unique identifiers (UUID) which identify a particular service provided by a BLE
device. The Bluetooth Special Interest Group at:

	 https://www.bluetooth.com/specifications/gatt/services

gives lists of shortened UUIDs. For example, the Battery Service (used in portable bat-
tery-operated BLE devices to indicate the current battery level) has the Uniform Type Iden-
tifier: org.bluetooth.service.battery_service and its assigned number is 0x180F. Using
unique identifiers, any BLE device can find out the battery level, regardless of the manufac-
turer. Looking at the Battery Service you can see that Battery Level is a characteristic
of this service and its UUID is 0x2A19 (see web site: org.bluetooth.characteristic.bat-
tery_level). The Characteristic Descriptor and Characteristic Presentation Format
are the descriptors of this service and their UUIDs are 0x2902 and 0x2904, respectively. As
an example, Figure 15.22 shows the GATT data structure for the Battery Service. If your
application requires its own UUID, you can generate it from the following website:

	 https://www.uuidgenerator.net/

Mastering the Arduino Uno R4 - UK.indd 278Mastering the Arduino Uno R4 - UK.indd 278 13-09-2023 11:1313-09-2023 11:13

Chapter 15 ● The Arduino Uno R4 WiFi

● 279

Figure 15.21: The GATT hierarchy.

Figure 15.22: GATT data structure for the Battery Service.

Unfortunately, at the time of drafting this book the Radio Module (e.g., Bluetooth
hardware) on the Arduino Uno R4 WiFi development board needed a firmware
update to version 0.2.0 before Bluetooth could be used. Also, the Arduino BLE
library was in Beta version, i.e., still under development. Interested readers can load
the new firmware and the Arduino BLE library from the following link:

	� https://forum.arduino.cc/t/radio-module-firmware-version-0-2-0-is-now-
available/1147361

The author has upgraded the firmware on his development board and also installed the
Arduino BLE library successfully by following the instructions given in the above link. He has
also tested some Bluetooth BLE-based programs successfully after the firmware upgrade
and library installation.

Mastering the Arduino Uno R4 - UK.indd 279Mastering the Arduino Uno R4 - UK.indd 279 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 280

Chapter 16 ● Serial Communications

16.1 Overview
Serial communication is used in many applications and can be implemented in software
or hardware. Hardware-based serial communication is usually done using a UART and this
form of serial communication is not just more reliable than software-based, but also faster.
Serial communication is normally done using 3 wires: Transmit (TX), Receive (RX), and
Ground. In a typical application, the TX and RX pins are crossed over. i.e., the TX and RX
pins of serial device 1 are connected to RX and TX pins of serial device 2.

One of the most important parameters of serial transmission is the baud rate. This is basi-
cally the number of bits transferred in one second. The baud rate can take values of 9600,
19200, 38400, etc. It is important that both devices have the same baud rate, and other-
wise, they cannot communicate serially. Data is transferred in a frame. The most commonly
used frame is: 1 start bit, 8 data bits, no parity bit, 1 stop bit, making a total of 10 bits.
Therefore, for example, at a baud rate of 9600, 960 characters (or bytes) are transferred
every second. The (optional) parity bit is used for error checking and can be odd or even.
If used, the parity bit is added to the end of the data before the stop bit. With odd-parity
communication, the parity bit is set or reset so that the number of 1s in the data is odd.
Similarly, with even-parity communication, the number of 1s in the data is even. Normally,
the line is at logic 1 and goes to logic 0 to indicate the start of the communication. The data
bits are then sent serially with the correct timings, followed by the stop bit, which is the
low-to-high transition of the line.

One advantage of using serial communication instead of parallel is that only 3 wires are
used instead of 8 or more wires. Also, the communication distance is much longer with se-
rial communication. Most serial communication wires nowadays carry +5 V or GND.

Traditionally, long-distance serial communication is implemented based on the RS232 pro-
tocol where the voltage levels are ±12 V, with –12 V representing Mark (or 1) and +12 V
representing SPACE (or 0). Special ICs are used to translate the +5 V and GND voltages
to ±12 V.

In this chapter, an example project is given to show how hardware-based serial communi-
cation can be used with the Arduino Uno R4 Minima.

The UNO R4 Minima board features two separate hardware serial ports.

•	One port is exposed via USB-C
•	One port is exposed via RX/TX pins.

This is one of the few things that are distinctly different from Uno R3 to Uno R4, as the
former only features one hardware serial port that's connected to both the USB port and
the RX/TX pins on the board.

Mastering the Arduino Uno R4 - UK.indd 280Mastering the Arduino Uno R4 - UK.indd 280 13-09-2023 11:1313-09-2023 11:13

Chapter 16 ● Serial Communications

● 281

The Arduino Uno supports many library functions for serial communication. Some of the
commonly used ones are given below.

begin()	 -	 start serial communication
available()	 -	 check if serial data is available
read()	 -	 read a byte from the serial port
readBytesUntil()	 -	 read until a terminator character is detected
readString()	 -	 read characters into a string
readStringUntil()	 -	 read characters until a terminator character
print()	 -	 send data to the serial port
println()	 -	 send data terminated with a new line to the serial port
setTimeout()	 -	 specify the maximum time (in ms) to wait for serial data

See: https://www.arduino.cc/reference/en/language/functions/communication/serial/ for
detailed information on all the supported functions

16.2 Project 1: Receiving ambient temperature from an Arduino Uno
R3
Description: In this project, an Arduino Uno R3 reads the ambient temperature and sends
it at a 1-second rate over a serial line to an Arduino Uno R4 Minima where it is displayed on
the Serial Monitor. The aim of this project is to show how serial communication can be used.

Block diagram: Figure 16.1 shows the block diagram of the project. In this project, an
LM35-type analog temperature sensor is used.

Figure 16.1: Block diagram of the project.

Circuit diagram: As shown in Figure 16.2, LM35 is connected to port pin A5 of the Arduino
Uno R3. The serial TX pin (pin 1) of the Arduino Uno R3 is connected to the RX pin (pin 0)
of the Arduino Uno R4 Minima. Additionally, the Ground pins are connected together.

Mastering the Arduino Uno R4 - UK.indd 281Mastering the Arduino Uno R4 - UK.indd 281 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 282

Figure 16.2: Circuit diagram of the project.

Arduino Uno R3 program listing: Figure 16.3 shows the Arduino Uno R3 program list-
ing (Program: SendTemp). Software serial library is used for the Arduino Uno R3. Pins 2
and 3 are configured as serial RX and TX respectively. The baud rate is set to 9600. Inside
the main program loop, the temperature is read from analog port A5 and is converted to
degrees C. It is then converted into a string in variable Temp and terminated with a "#"
character. The resulting data is sent over the serial line every second.

/***
 * SEND TEMPERATURE READINGS OVER SERIAL LINE
 * ==
 * This program sends he LM35 temperatur ereadings
 * to serial line every second
 *
 * Author : Dogan Ibrahim
 * Program: SendTemp
 * Date : July, 2023
 **/
#include <SoftwareSerial.h>

#define rxPin 2
#define txPin 3
SoftwareSerial MySerial(rxPin, txPin);

int LM35 = A5;
int TempValue = 0;
float mV;
int T;

void setup()
{
 MySerial.begin(9600);
}

//

Mastering the Arduino Uno R4 - UK.indd 282Mastering the Arduino Uno R4 - UK.indd 282 13-09-2023 11:1313-09-2023 11:13

Chapter 16 ● Serial Communications

● 283

// Read the temperature and send over serial line
//
void loop()
{
 TempValue = analogRead(LM35); // Read temp
 mV = 5000.0 * TempValue / 1024.0; // in mV
 T = int(mV / 10); // In degrees C
 String Temp = String(T) + "#"; // Terminate
 MySerial.print(Temp); // Send
 delay(1000);
}

Figure 16.3: Program: SensTemp.

Arduino Uno R4 Minima program listing: Figure 16.4 shows the Arduino Uno R4 Minima
program listing (Program: RcvTemp). Hardware UART is used in this program to receive
the temperature data. Function readStringUntil() is used to read the temperature until
the terminator '#' key is detected. The temperature is displayed on the Serial Monitor as
shown in Figure 16.5.

//--
// RECEIVE TEMPERATURE DATA OVER SERIAL LINE
// ===
//
// In this program the temperature sent by the Arduino Uno R3 is read
// over the serial line (UART) and is displayed on the Serial Monitpr
//
// Author: Dogan Ibrahim
// File : RcvTemp
// Date : July, 2023
//---
const char Terminator = '#';
void setup()
{
 Serial1.begin(9600); // UART line
 Serial.begin(9600); // Serial Monitor
}

void loop()
{
 if(Serial1.available())
 {
 String T = Serial1.readStringUntil(Terminator);
 Serial.print("Temperature = ");

Mastering the Arduino Uno R4 - UK.indd 283Mastering the Arduino Uno R4 - UK.indd 283 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 284

 Serial.println(T);
 }
}

 Figure 16.4: Program: RcvTemp.

Figure 16.5: Temperature displayed on Serial Monitor.

Mastering the Arduino Uno R4 - UK.indd 284Mastering the Arduino Uno R4 - UK.indd 284 13-09-2023 11:1313-09-2023 11:13

Chapter 17 ● Using an Arduino Uno Simulator

● 285

Chapter 17 ● Using an Arduino Uno Simulator

17.1 Why simulation?
Among the most salient features of engineering courses is its strong dependency on labo-
ratory work. Students learn complex engineering theories in classes and then apply these
theories to practice by carrying out experiments in laboratories. This is true for all engi-
neering courses, whether chemical engineering, mechanical engineering, electronic en-
gineering, etc. For example, electronic engineering students learn the architecture and
programming of microcontrollers in class. They then carry out experiments in laboratories
using real microcontroller hardware and programming tools such as assemblers, compilers,
debuggers, and so on.

Although real laboratory experiments are very useful, they have some problems associated
with them:

•	Investment in real electronic components and instruments can be costly. A
large number of identical instruments is usually required for a class of students
and this raises the cost.

•	The characteristics of electronic components and electronic equipment can
change with ageing, wear and tear, and poor storage conditions.

•	It is not always easy to find the required components and students may have to
wait long before they can develop and test their projects.

•	Real components can easily be damaged by improper use, for example by
applying large voltages, or by passing large currents, or short-circuiting.

•	Students can get electric shocks in laboratories by not following the safety
regulations. Thus, an instructor must always be present in a laboratory to make
sure that students connect the components correctly and follow the safety
rules.

•	Laboratory instruments usually need calibration from time to time and this can
be costly as well as inconvenient.

•	Students enrolled in distance learning courses may not be able to attend
laboratories. This was also the case during the recent Covid-19 pandemic.

Computer simulation is an alternative to carrying out experiments using real hardware. A
simulator is basically a computer program used to predict the behavior of a real circuit.
Software models of real components like the Arduino Uno board, resistors, LEDs, buzzers,
etc., are used in a simulator program. Typically, in a simulation, students run the simulator
program and pick the required components and virtual instruments from a software library.
For example, the value of a resistor can be changed with the click of a button. Then, they
connect the required sensors and components to the target processor (e.g. an Arduino
Uno) using the provided software tools. The simulation process is then activated and the
response of the circuit is observed, printed, or plotted.

Although simulation is an alternative and an invaluable tool in designing and developing
electronic projects, it has the following advantages and disadvantages:

Mastering the Arduino Uno R4 - UK.indd 285Mastering the Arduino Uno R4 - UK.indd 285 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 286

+ �Any component with whatever cost can be modeled and simulated using a simulator.
Virtual instruments are computer programs, hence there are no cost issues.

– �The simulation does not usually take into consideration any component tolerances,
aging, or temperature effects. Users may come to think that all components are
ideal at all times.

+ �Virtual instruments and components used in a simulation can not be damaged by
incorect connections or by applying excessive voltages or currents.

– �Simulation results may not be accurate at very high frequencies. For example, con-
cepts like the skin effect in inductors is not normally considered in a high-frequency
simulation.

+ �There are no calibration processes associated with virtual instruments. They are
available at all times and always operate with the same specifications.

– �Simulation allows measurements of internal currents and voltages that in many cas-
es can be virtually impossible to access while using real components.

+ �Simulation is easily embedded into distance education courses. Students can be
supplied with copies of the simulator program, or they can be given access codes to
use a simulator over the web (e.g. TINACloud). Experiments can then be carried out
at the users' places of studying at times convenient to them.

– �Simulation programs constantly evolve as new components are introduced by man-
ufacturers. This requires updating the software from time to time.

In a typical Arduino Uno simulation exercise, students can graphically connect LEDs to the
Arduino Uno, and then write a program to turn these LEDs ON and OFF. The behavior of the
project can then be observed graphically.

There are several freely available Arduino Uno simulator software programs available on
the Internet (e.g. Tinkercad, Wokwi, PICSimLab, Tina, SimulIDE, UnoArduSim, Virtronics,
Proteus VSM, Virtual Breadboard, etc). In this chapter, you will be learning to use a simu-
lator software called the Wokwi. This software can be used to simulate the Arduino Uno,
ESP32, and STM32 processors.

17.2 The Wokwi simulator
This simulator is available free of charge at can be used from a web browser at the following
link:

	 https://wokwi.com/

Perhaps the easiest way to learn to use this simulator is to carry out an example.

Mastering the Arduino Uno R4 - UK.indd 286Mastering the Arduino Uno R4 - UK.indd 286 13-09-2023 11:1313-09-2023 11:13

Chapter 17 ● Using an Arduino Uno Simulator

● 287

17.2.1 Project 1: A simple project simulation — flashing LED
In this project, you connect an LED through a 1-kΩ current-limiting resistor to port 7 of the
Arduino Uno. A program will then be written to flash the LED every second.

The steps to simulate this circuit is as follows:

•	Start the Wokwi simulator from the link given above.

•	Scroll down and select Arduino Uno under the heading Start from Scratch.

•	On the left-hand side, you will be presented with an Arduino IDE template, and
on the right-hand side, you will see an Arduino board (Figure 17.1).

Figure 17.1: Arduino Uno simulator startup screen.

•	You will now have to connect an LED and a resistor. Click on the Blue + sign
and select LED. Also, click again and select Resistor. You should see an LED
and a resistor at the top of the board (Figure 17.2).

Figure 17.2: Select an LED and a resistor.

Mastering the Arduino Uno R4 - UK.indd 287Mastering the Arduino Uno R4 - UK.indd 287 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 288

•	Click on the LED and the resistor and move them. Connect the +ve pin of the
LED (bent pin) to port pin 7 of the Uno, and the other pin to GND through the
resistor as shown in Figure 17.3.

Figure 17.3: Connect the LED and the resistor to the Arduino Uno.

•	You should now write the program. This is shown at the left-hand side of the
screen in Figure 17.4.

Figure 17.4: The program.

•	Click the Green arrow icon at the top right-hand side to start the simulation.
You should see the LED flashing every second.

17.2.2 Project 2: Displaying text on LCD
In this project, you will select an already-designed project with an LCD. The steps are:

•	Start the Wokwi simulator from the link given above.

•	Scroll down and select Arduino LCD 16x02 under the heading Quick Start
Templates. Figure 17.5 shows the circuit.

Mastering the Arduino Uno R4 - UK.indd 288Mastering the Arduino Uno R4 - UK.indd 288 13-09-2023 11:1313-09-2023 11:13

Chapter 17 ● Using an Arduino Uno Simulator

● 289

Figure 17.5: Arduino Uno with LCD.

•	The program listing for this project is given on the left-hand side (see Figure
17.6).

Figure 17.6: Program listing.

•	Click the Green arrow icon to start the simulation, The text Hello World will be
displayed on the LCD (Figure 17.7).

Mastering the Arduino Uno R4 - UK.indd 289Mastering the Arduino Uno R4 - UK.indd 289 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 290

Figure 17.7: Displaying text.

17.2.3 Project 3: LCD seconds counter
In this project, the previous LCD hardware is used. Here, the LCD counts up every second.
The steps are:

•	Start the Wokwi simulator from the link given above.

•	Scroll down and select Arduino LCD 16x02 under the heading Quick Start
Templates as in the previous project.

•	Write the program as shown in Figure 17.8.

•	You should see the LCD counting up every second (Figure 17.9).

Figure 17.8: Program listing.

Mastering the Arduino Uno R4 - UK.indd 290Mastering the Arduino Uno R4 - UK.indd 290 13-09-2023 11:1313-09-2023 11:13

Chapter 17 ● Using an Arduino Uno Simulator

● 291

Figure 17.9: The LCD is counting up.

Suggestions: There are many built games and project templates available on the Wokwi
website that you can try to make yourself familiar with simulating various sensors, displays,
and actuators. Examples include "Simon" game, LED matrix tunnel, Arduino calculator,
alarm clock, DHT22, TFT display, OLED display, keypad, servo, NTP clock, MQTT weather
logger, joke machine, traffic controller, etc.

Mastering the Arduino Uno R4 - UK.indd 291Mastering the Arduino Uno R4 - UK.indd 291 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 292

Chapter 18 ● The CAN bus

18.1 Overview
The Controller Area Network (CAN) was originally developed for use in passenger cars.
Today, CAN controllers are available from over 20 manufacturers, and CAN is finding ap-
plications in many other fields such as medical, aerospace, process control, automation,
and so on. With the establishment of the CAN in Automation Association (CiA) in 1992,
manufacturers and users have joined to exchange ideas and develop the CAN standards
and specifications.

Fortunately, the new Arduino Uno R4 supports the CAN bus hardware and software. In this
chapter, a brief introduction to the CAN bus will be given, followed by projects demoing the
use of the CAN bus on the Arduino Uno R4. Detailed information on the CAN bus can be
found on the Internet in many tutorials, datasheets, e-books, and application notes. You
may find the book The CAN Bus Companion from Elektor very useful, especially as it comes
with a CAN driver board.

18.2 The CAN bus
Figure 18.1 shows a CAN bus with three nodes. The bus is made up of a length of twist-
ed-pair cable and is terminated at both ends with a resistor so that the bus characteristic
resistance is 120 Ω. The two wires of the bus are termed CAN_H and CAN_L.

Figure 18.1: CAN bus with three nodes.

18.2.1 CAN bus termination
The bus is terminated to minimize signal reflections. Usually, a single 120-Ω resistor is
connected at each end of the bus. Although the power rating of the chosen resistor is
not particularly important, possible short circuits to power supplies on the bus should be
considered when selecting a resistor power rating. A 0.25-watt, 5% tolerance resistor is
generally used but it is recommended to use a higher power rating of 1 watt to avoid any
damage to the bus due to conceivable transceiver short-circuits.

Mastering the Arduino Uno R4 - UK.indd 292Mastering the Arduino Uno R4 - UK.indd 292 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 293

Although a single 120-Ω resistor is frequently used, in general, one of the following meth-
ods can be used to terminate the bus:

•	Standard termination
•	Split termination
•	Biased split termination

The most commonly used termination method is the standard termination where a 120-Ω
resistor is used at each end of the bus, shown in Figure 18.2.

Figure 18.2: Standard bus termination.

Figure 18.3 shows split termination, which is gaining in popularity. In this method, two
60-Ω resistors and a capacitor are used at each end of the bus. The advantage of this
method is that it eliminates high-frequency noise from the bus lines. Care must be taken
to match the resistors so as not to reduce the effective noise immunity established on the
bus. Typically, a 4.7-nF capacitor is chosen, which generates a response with a 3-dB roll off
at approximately 1.1 Mbps.

Figure 18.3: Split bus termination.

Figure 18.4 shows the biased split bus termination, where a voltage divider circuit and a
capacitor are used at each end of the bus. As in split termination, the biased split termina-
tion increases the EMC performance of the bus.

Mastering the Arduino Uno R4 - UK.indd 293Mastering the Arduino Uno R4 - UK.indd 293 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 294

Figure 18.4: Biased split bus termination.

18.2.2 CAN bus data rate
ISO-11898 CAN specifies that a device on the bus must be able to drive a 40-m long
cable at 1 Mb/s. In practice, a much higher bus length is achieved by lowering bus speed.
Table 2.1 shows bus speed against bus length and nominal bit time. At 1000 kbps (1 µs
nominal bit time) the maximum allowed bus length is 40 m, whereas at 10 kbps (100 µs
nominal bit time) the maximum allowable bus length is increased to 6700 m.

Data rate
(kbps)

Nominal bit
time (µs)

Bus length
(meters)

10 100 6700

20 50 3300

50 20 1300

125 8 530

250 4 270

500 2 130

1000 1 49

Table 18.1: Data rate against nominal bit time and maximum bus length.

A graph of the maximum data rate against the maximum allowed bus length is shown in
Figure 18.5.

Mastering the Arduino Uno R4 - UK.indd 294Mastering the Arduino Uno R4 - UK.indd 294 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 295

Figure 18.5: CAN bus data rate and maximum bus length.

In long cables, bus lines should be as close as possible to a straight line to keep possible
reflections to a minimum. The cable length can be extended using a bridge device or re-
peater.

18.2.3 Cable stub length
In high data rate applications, the length of cable stubs and the distance between the
nodes becomes an important factor. Since the stub lines are unterminated, signal re-
flections can develop on these lines, creating bus errors. At the maximum data rate of 1
Mbps, the length of the cable stubs (see Figure 18.6) should not be greater than 0.3 m,
and the maximum node distance should be 40 m.

Figure 18.6: Cable stubs and node distances.

18.2.4 CAN Bus node
A CAN bus node consists of a CAN controller and a CAN transceiver (Figure 18.7). The CAN
controller is connected to a microcontroller and the CAN transceiver is connected to the
physical CAN bus. Some microcontrollers have built-in CAN controller circuitry (e.g. ARM)
and thus a CAN node can be created using an external CAN transceiver chip. If the micro-

Mastering the Arduino Uno R4 - UK.indd 295Mastering the Arduino Uno R4 - UK.indd 295 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 296

controller does not have built-in CAN controller circuitry, then an external CAN controller
and transceiver chips will be required to create a CAN node. CAN modules are available
with built-in controller and transceiver chips. Such modules usually communicate with the
microcontroller using the SPI bus.

Figure 18.7: CAN bus node.

18.2.5 CAN bus signal levels
The data on the CAN bus is differential, and the bus specifies two logical states: dominant
and recessive. Figure 18.8 shows the state of signals on the bus (see document ISO-
11898-4 for more details).

The recessive state is logic "1" and at this state, the differential voltage on the bus (i.e.,
Vdiff = CAN_ H – CAN_L) is around 0 V (ideally CAN_H = CAN_L = 2.5 V). In practice,
the recessive differential output voltage is less than 0.05 V at a bus transmitter output
device.

The dominant state is logic "0" and at this state, the differential voltage on the bus (i.e.
Vdiff = CAN_ H – CAN_L) is around 2 V (ideally CAN_H = 3.5 V and CAN_L = 1.5 V). In
practice, the dominant differential output voltage is between 1.5 V and 3.0 V.

Figure 18.8: CAN bus signal levels.

Mastering the Arduino Uno R4 - UK.indd 296Mastering the Arduino Uno R4 - UK.indd 296 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 297

18.2.6 CAN_H voltage
The CAN_H voltage should be half of the 5 V during times when no message is transmitted
(or when the CAN bus is in a recessive state). This voltage can be measured using a digital
voltmeter (DVM) if it is already known that the CAN controller is not sending any messages.
In order to measure the CAN_H voltage, disconnect the TX pin from the transceiver and
connect a +5 V supply to the transceiver TX input to force the transceiver to the recessive
state (see Figure 18.9). Connect one lead of the meter to the CAN_H pin of the transceiver,
and the other pin of the meter to the ground pin of the transceiver. The measured voltage
should be around 2.5 V.

Figure 18.9: Measuring the CAN_H voltage.

18.2.7 The CAN_L voltage
The CAN_L voltage should be half of the available 5 V when no message is transmitted (or
when the CAN bus is in a recessive state). As above, this voltage can be measured using
a digital voltmeter. Use the same procedure as above but this time connect the voltmeter
between CAN_L and the ground terminals (see Figure 18.10). The measured voltage should
be around 2.5 V.

Figure 18.10: Measuring the CAN_L voltage.

18.2.8 Bus arbitration
When several bus nodes attempt to transmit at the same time, bus arbitration logic is
applied to grant access to the bus. When there is arbitration on the bus, a dominant bit
state always wins out over a recessive bit state.

18.2.9 Bus transceiver
The output of a CAN transceiver circuit is usually an "open-collector" (e.g. TTL logic) or
"open-drain" (e.g. CMOS logic) configuration. When several such devices are connected to
a bus, the net logic state of the bus is defined by the logical "AND" of the device outputs
(also called the "Wired AND"). For example, if three devices are connected to the bus, the
state of the bus will be logic "1" if (and only if) all the outputs of all the three devices are
at logic "1", otherwise the bus will be at logic "0".

Mastering the Arduino Uno R4 - UK.indd 297Mastering the Arduino Uno R4 - UK.indd 297 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 298

18.2.10 CAN connectors
Even though CAN is a two-wire network, in many cases a power signal and a Ground
signal are added to the standard CAN connectors. As mentioned earlier, the actual
wires used for the bus can either be unshielded twisted-pair (UTP) or shielded twist-
ed-pair (STP). Shielded cables should be used in electrically noisy environments and
when long bus cables are needed.

The standard CAN connector is a 9-pin D-type connector (DE-9) as shown in Figure
18.11. The pin configuration is shown in Table 2.2. Pin 2 and pin 7 are the CAN_L and
CAN_H signals, respectively. Pin 3 and pin 9 are used as signal ground and signal power,
respectively. Signal Ground and signal power pins can be useful when it is required to
power remote devices. Care should be exercised to make sure that the current capacity
of the cable used is not exceeded.

Figure 18.11: CAN D-connector.

9 Pin (male) D-Sub CAN Bus PinOut

Pin # Signal Names Signal Description

1 Reserved Upgrade Path

2 CAN_L Dominant Low

3 CAN_GND Ground

4 Reserved Upgrade Path

5 CAN_SHLD Shield, Optional

6 GND Ground, Optional

7 CAN_H Dominant High

8 Reserved Upgrade Path

9 CAN_V+ Power, Optional

Table 18.2: CAN-D connector pin configuration.

Figure 18.12 shows a CAN-D type connector with a short CAN cable and terminating re-
sistors.

Figure 18.12: CAN-D type connector with CAN bus cable.

Mastering the Arduino Uno R4 - UK.indd 298Mastering the Arduino Uno R4 - UK.indd 298 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 299

Some companies use a 10-pin header to make connections to the bus. Table 2.3 gives the
standard pin configuration for this type of connector.

10-Pin Header CAN Bus PinOut

Pin # Signal Names Signal Description

1 Reserved Upgrade Path

2 GND Ground, Optional

3 CAN_L Dominant Low

4 CAN_H Dominant High

5 CAN_GND Ground

6 Reserved Upgrade Path

7 Reserved Upgrade Path

8 CAN_V+ Power, Optional

6 Reserved Upgrade Path

7 Reserved Upgrade Path

Table 18.3: CAN 10-pin header pin configuration.

It is also common to use either RJ10 or RJ45-type connectors in CAN bus applications
as shown in Figure 18.13. The pin configuration of this type of connector is shown in
Table 2.4.

Figure 18.13: RJ10 or RJ45 type CAN connector.

RJ10, RJ45 CAN Bus PinOut

RJ45 Pin # RJ10 Pin # Signal Name Signal Description

1 2 CAN_H Dominant High

2 3 CAN_L Dominant Low

3 4 CAN_GND Ground

4 - Reserved Upgrade Path

5 - Reserved Upgrade Path

6 - CAN_SHLD CAN Shield, Optional

7 - CAN_GND Ground

8 1 CAN_V+ Power, Optional

Table 18.4: RJ10 or RJ45 connector pin configuration.

Mastering the Arduino Uno R4 - UK.indd 299Mastering the Arduino Uno R4 - UK.indd 299 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 300

18.3 Arduino Uno R4 CAN bus interface
The Arduino Uno R4 Minima has the following two pins that can be used for the CAN bus
interface: D5 (RX) and D4 (TX). On the WiFi version, the CAN bus pins are: D13 (RX) and
D10 (TX). Although there is CAN bus interface signals, it is required to connect CAN bus
transceiver modules to these pins before connecting them to the physical CAN bus.

18.3.1 CAN bus transceivers
A CAN bus transceiver module is the physical interface between the Arduino Uno R4 CAN
bus pins and the actual physical CAN bus cable. There are several transceiver modules
available, and the one used in this chapter is the TJA1051. The TJA1051 (Figure 18.14) is
a high-speed CAN transceiver module that provides an interface between a CAN protocol
controller and the physical two-wire CAN bus.

The basic features of the TJA1051 are:

•	Supply voltage 4.5–5.5 V
•	ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5 compliant
•	Suitable for 12 V and 24 V systems
•	Low electromagnetic emission
•	Supply current (1 mA in silent mode, 5 mA in bus recessive mode, 50 mA in

bus dominant mode)

Figure 18.14: TJA1051 transceiver module.

The transceiver module has the following pins:

CANH	 CAN_H bus interface
CANL	 CAN_L bus interface
VCC		 +5 V
GND	 GND
CTX		 Transmit data input
CRX		 Receive data output (reads data from the bus)
S		 Silent mode control (LOW in normal mode, HIGH in silent mode)

Mastering the Arduino Uno R4 - UK.indd 300Mastering the Arduino Uno R4 - UK.indd 300 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 301

A CAN bus-based project is given in the following section to illustrate how the CAN bus
feature of the Arduino Uno R4 can be used. The built-in Arduino_CAN library is used to
communicate with other CAN devices.

18.4 Project 1: Arduino Uno R4 WiFi to Arduino Uno R4 Minima CAN
bus communication
Description: In this project, you will have two Arduino Uno R4 boards. Arduino Uno R4
WiFi is named the GENERATOR and the Arduino Uno R4 Minima is named the SQUARER
and both boards are connected on a CAN bus (i.e. there are two nodes called GENERATOR
and SQUARER). The GENERATOR node will generate random integer numbers between
1 and 20 and send them to the SQUARER node, where the received numbers are squared
and displayed on the Serial Monitor of the IDE. This process is repeated after a 3-second
delay. The aim of this project is to show how two Arduino Uno R4s can be connected and
communicate on a CAN bus.

Block diagram: Figure 18.15 shows the block diagram of the project. Here, the GENERA-
TOR node is Arduino Uno R4 WiFi, and the SQUARER node is Arduino Uno R4 Minima. Two
CAN bus transceiver modules, and the CAN bus wire are also shown.

Figure 18.15: Block diagram of the project.

Note: The TJA1051 IC and the CAN bus transceiver modules and terminating resistors are
not included in the kit. Also, only one (1) development board is included.

Circuit diagram: Figure 18.16 shows the circuit diagram of the project. Notice that the
bus cable is terminated with two 120-Ω resistors. The CANH and CANL terminals of both
transceivers are connected to the bus cable. The CTX and CRX pins of the transceiver mod-
ule are connected to the Arduino Uno R4 WiFi D10 and D13 pins. Similarly, the CTX and
CRX pins of the other transceiver are connected to the Arduino Uno R4 Minima D4 and D5
pins, respectively. In this project, about 1-meter length of twisted-pair cable was used as
the CAN bus cable.

Mastering the Arduino Uno R4 - UK.indd 301Mastering the Arduino Uno R4 - UK.indd 301 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 302

Figure 18.16: Circuit diagram of the project.

The Arduino_CAN library supports the following baud rates:

	 BR_125k, BR_250k, BR_500k, BR_1000k

The required baud rate must be specified during the initialization. For example, for 250
kbit/s baud rate, the required statement is: CAN.begin(CanBitRate::BR_250k).

Sending data
A CanMsg message object is created with the CAN_ID, size and data, and is sent over the
bus using statement: CAN.write()

Receiving data
CAN.available() is used to check for data, and then if data is available it is read using the
statement CAN.read().

Node: GENERATOR program listing: Figure 18.17 shows the program listing (Program:
GENERATOR). At the beginning of the program, the required header files are included at
the beginning of the program. Then, array msg_data is initialized with 8 elements. This
array will store the data to be sent over the CAN bus. CAN_ID is set to 0x20. Inside the
setup() function, the CAN bus baud rate is set to 250 KB/s and CAN is started.

Inside the main program loop, a random number is generated between 1 and 20 and is
sent over the CAN bus. Notice that only the first byte of the 8-byte data array msg_data is
initialized. This process is repeated after 3 seconds of delay where a new random number
is generated and sent to node SQUARER.

Mastering the Arduino Uno R4 - UK.indd 302Mastering the Arduino Uno R4 - UK.indd 302 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 303

//--
// CAN BUS PROGRAM
// ===============
//
// This program generates random numbers between 1 and 20 and sends them
// over the CAN bus to a node called SQUARER.The SQUARER node takes the
// square of these numbers and displays them on the Serial Monitor. CAN
// baud rate is set to 250 K.The process is repeated every 3 seconds
//
// Author: Dogan Ibrahim
// File : GENERATOR
// Date : July, 2023
//---
#include <Arduino_CAN.h>

static uint32_t const CAN_ID = 0x20;
uint8_t RandomNumber;
uint8_t msg_data[8];

void setup()
{
 Serial.begin(9600);
 delay(5000);

 if (!CAN.begin(CanBitRate::BR_250k))
 {
 Serial.println("CAN begin failed...");
 while(1);
 }
 else
 Serial.println("CAN begin success...");
}

void loop()
{
 RandomNumber = random(1, 21); // Random number
 Serial.print("Random number is: ");
 Serial.println(RandomNumber);
 msg_data[0] = RandomNumber;
 msg_data[1] = 0x00;
 msg_data[2] = 0x00;
 msg_data[3] = 0x00;
 msg_data[4] = 0x00;
 msg_data[5] = 0x00;
 msg_data[6] = 0x00;
 msg_data[7] = 0x00;

Mastering the Arduino Uno R4 - UK.indd 303Mastering the Arduino Uno R4 - UK.indd 303 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 304

 CanMsg msg(CAN_ID, sizeof(msg_data), msg_data);

 int const rc = CAN.write(msg);
 if(rc < 0)
 {
 Serial.print("CAN write failed. Error code is: ");
 Serial.println(rc);
 while(1);
 }

 delay(3000); // Wait 3 secs and repeat
 }

Figure 18.17: Program: GENERATOR.

Node: SQUARER program listing: Figure 18.18 shows the program listing (Program:
SQUARER). The beginning and setup() function of this program is similar to Figure 18.17.
Inside the main program loop, the program checks if there are any messages on the CAN
bus and reads these messages. In this program, a message is an integer number between
1 and 20. The received number is stored in variable Num and its square is displayed on
the Serial Monitor.

//--
// CAN BUS PROGRAM
// ===============
//
// This program receives random numbers between 1 and 20 over the CAN bus
// and takes teh square of these numbers and then dislays the numbers on
// the Serial monitor
//
// Author: Dogan Ibrahim
// File : SQUARER
// Date : July, 2023
//---
#include <Arduino_CAN.h>

static uint32_t const CAN_ID = 0x20;

void setup()
{
 Serial.begin(9600);
 delay(5000);

 if (!CAN.begin(CanBitRate::BR_250k))
 {

Mastering the Arduino Uno R4 - UK.indd 304Mastering the Arduino Uno R4 - UK.indd 304 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 305

 Serial.println("CAN begin failed...");
 while(1);
 }
 else
 Serial.println("CAN begin success...");
}

void loop()
{
 if(CAN.available())
 {Serial.println("available");
 CanMsg const msg = CAN.read();
 int Num = msg.data[0]; // Get the number
 Serial.print("Received number is: ");
 Serial.println(Num); // Received number
 Serial.print("Square is: ");
 Serial.println(Num * Num); // Square of number
 Serial.println("");
 }
}

Figure 18.18: Program: SQUARER.

Testing the project: Construct the project as shown in the circuit diagram and power up
both Arduino Unos. Start the Serial Monitor on the SQUARER node and you should see
the received numbers and their squares displayed every 3 seconds. The sample output is
shown in Figure 18.19.

Figure 18.19: Sample output on Serial Monitor.

Mastering the Arduino Uno R4 - UK.indd 305Mastering the Arduino Uno R4 - UK.indd 305 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 306

18.5 Project 2: Sending the temperature readings over the CAN bus
Description: As in the previous project, two Arduino Uno R4s are used. Node GETTEMP
is an Uno R4 WiFi and it reads the ambient temperature. Node DISPTEMP is an Uno R4
Minima, and it displays the temperature on the Serial Monitor. The temperature data is sent
every 3 seconds to node DISPTEMP. An analog temperature sensor (LM35) is used in this
project.

Block diagram: Figure 18.20 shows the block diagram.

Figure 18.20: Block diagram of the project.

Circuit diagram: The circuit diagram is similar to Figure 18.16 and is shown in Figure
18.21. Analog temperature sensor LM35 is connected to analog input A5 of node GET-
TEMP.

Figure 18.21: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 306Mastering the Arduino Uno R4 - UK.indd 306 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 307

Node GETTEMP program listing: Figure 18.22 shows the program listing (Program:
GETTEMP). The program is similar to Figure 18.17. Here, the temperature is read from
analog port A5 and is sent over the CAN bus every 3 seconds. In this program, the default
ADC resolution of 10 bits is used.

//--
// GET TEMPERATURE AND SEND OVER CAN BUS
// =====================================
//
// This program reads the temperature from analog port A5 and sends over
// the CAN bus every 3 seconds
//
// Author: Dogan Ibrahim
// File : GETTEMP
// Date : July, 2023
//---
#include <Arduino_CAN.h>
int LM35= A5;
int val = 0;
float mV;
float conv = 5000.0 / 1024;

static uint32_t const CAN_ID = 0x20;
uint8_t msg_data[8];

void setup()
{
 Serial.begin(9600);
 delay(5000);

 if (!CAN.begin(CanBitRate::BR_250k))
 {
 Serial.println("CAN begin failed...");
 while(1);
 }
 else
 Serial.println("CAN begin success...");
}

void loop()
{
 val = analogRead(LM35); // Read raw temp
 mV = val * conv; // in mV
 int T = int(mV / 10); // in degrees C
 Serial.print("Temp = ");
 Serial.println(T);

Mastering the Arduino Uno R4 - UK.indd 307Mastering the Arduino Uno R4 - UK.indd 307 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 308

 msg_data[0] = T;
 msg_data[1] = 0x00;
 msg_data[2] = 0x00;
 msg_data[3] = 0x00;
 msg_data[4] = 0x00;
 msg_data[5] = 0x00;
 msg_data[6] = 0x00;
 msg_data[7] = 0x00;

 CanMsg msg(CAN_ID, sizeof(msg_data), msg_data);

 int const rc = CAN.write(msg);
 if(rc < 0)
 {
 Serial.print("CAN write failed. Error code is: ");
 Serial.println(rc);
 while(1);
 }

 delay(3000); // Wait 3 s
 }

Figure 18.22: Program: GETTEMP.

Node DISPTEMP program listing: Figure 18.23 shows the program listing (Program:
DISPTEMP). The program is similar to Figure 18.18. Here, the temperature is displayed
on the Serial Monitor.

//--
// DISPLAY TEMPERATURE
// ===================
//
// This program receives temperature over the CAN bus and displays it
//
// Author: Dogan Ibrahim
// File : DISPTEMP
// Date : July, 2023
//---
#include <Arduino_CAN.h>

static uint32_t const CAN_ID = 0x20;

void setup()
{
 Serial.begin(9600);

Mastering the Arduino Uno R4 - UK.indd 308Mastering the Arduino Uno R4 - UK.indd 308 13-09-2023 11:1313-09-2023 11:13

Chapter 18 ● The CAN bus

● 309

 delay(5000);

 if (!CAN.begin(CanBitRate::BR_250k))
 {
 Serial.println("CAN begin failed...");
 while(1);
 }
 else
 Serial.println("CAN begin success...");
}

void loop()
{
 if(CAN.available())
 {
 CanMsg const msg = CAN.read();
 int T = msg.data[0]; // Get the temp
 Serial.print("Received temperature is: ");
 Serial.println(T); // Received temp
 }
}

Figure 18.23: Program: DISPTEMP.

Figure 18.24 shows the temperature displayed on node DISPTEMP. The project was con-
structed on a breadboard as shown in Figure 18.25.

Figure 18.24: Example display on node DISPTEMP.

Mastering the Arduino Uno R4 - UK.indd 309Mastering the Arduino Uno R4 - UK.indd 309 13-09-2023 11:1313-09-2023 11:13

Mastering the Arduino Uno R4

● 310

Figure 18.25: Project constructed on a breadboard.

Mastering the Arduino Uno R4 - UK.indd 310Mastering the Arduino Uno R4 - UK.indd 310 13-09-2023 11:1313-09-2023 11:13

Chapter 19 ● Infrared Receiver and Remote Controller

● 311

Chapter 19 ● Infrared Receiver and Remote Controller

19.1 Overview
Infrared (IR) communication is widely used in many applications such as TV/video remote
control, motion sensors, infrared thermometers, etc. In this chapter, you will learn how to
use the infrared receiver and transmitter modules supplied in the kit.

IR communication is widely used thanks to its ease of use and very low cost. When you
press the button on your TV remote control, the IR transmitter LED turns ON and OFF
and sends a modulated IR signal to the TV receiver. This signal is demodulated by the TV
and the required command is executed. One of the common modulation techniques used
for IR communication is called 38 kHz modulation. Using modulation prevents the signal
conveyed from transmitter to receiver from being affected by ambient light. Many manu-
facturers use their own codes for their IR remote control systems, while others share their
codes for compatibility.

19.2 The supplied infrared receiver
The infrared receiver supplied with the kit (Figure 19.1) is a photodiode and preamplifier
that converts IR light into electrical signals.

Figure 19.1: Infrared receiver supplied with the kit.

The IR receiver has 3 pins: GND (middle pin), VCC (right-hand pin facing the receiver
glass), and the output pin (left-hand pin facing the receiver glass). This receiver operates
at 38 kHz and works at 2.1 V to 6.5 V, with a supply current not exceeding 1.5 mA. The
maximum reception distance is around 15 meters assuming a line of sight between the
transmitter and the receiver.

19.3 The supplied infrared remote control transmitter unit
The supplied IR transmitter unit (Figure 19.2) is a keypad-based remote control unit oper-
ating with a CR2025-type coin battery.

Mastering the Arduino Uno R4 - UK.indd 311Mastering the Arduino Uno R4 - UK.indd 311 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 312

Figure 19.2: Infrared remote control transmitter.

Before you can use the IR receiver and transmitter, you have to know the codes sent by the
remote control unit when a button is pressed. Knowing this information, you can develop
projects to control devices remotely from the remote control unit.

The popular Arduino Uno R3 IRRemote control library was not supported by the Arduino
Uno R4 family at the time of drafting this book. Because of this, the author has developed a
program from the first principles in order to do infrared-based remote control applications.
It is important to understand how an infrared remote control system works before the op-
eration of this program can be understood. This is explained in detail in the next section.

19.4 Operation of an infrared remote control system
There are many infrared-based remote control standards (NEC, Philips RC5, Philips RC6
SIRC, Sony, etc.) developed by various manufacturers. In this section, the popular NEC
control protocol is explained since this is the protocol used by the author.

A typical infrared communication system requires an IR transmitter and an IR receiver. The
transmitter looks like a standard LED, except it produces light in the IR spectrum instead of
the visible spectrum. The IR receiver, on the other hand, is a photodiode and pre-amplifier
that converts the IR light into an electrical signal that can be used by a digital processor.
As mentioned earlier, IR light is modulated so that it is not affected by environmental light
in the form of noise. In IR modulation, an encoder on the IR controller unit (remote control
handheld unit) converts a binary signal into a modulated electrical signal, which is sent to
the transmitting IR LED, thus emitting an infrared light signal. The receiver then demodu-
lates this IR light signal and converts it back to binary so that it can be used by a processor.
The carrier frequency used by most transmitters is 38 kHz, because it is rare in nature and
thus can be distinguished from ambient noise. This way the IR receiver will know that the
38 kHz signal was sent from the transmitter and not picked up from the surrounding en-
vironment. Figure 19.3 shows as a block diagram how the infrared remote control system
works.

Mastering the Arduino Uno R4 - UK.indd 312Mastering the Arduino Uno R4 - UK.indd 312 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 313

Figure 19.3: Infrared remote control system.

The NEC IR transmission protocol uses pulse encoding of the message bits. Each pulse
burst is 562.5 µs in length, at a carrier frequency of 38 kHz (26.3 µs). Logic bits are trans-
mitted as follows:

•	Logic '0' — a 562.5-µs pulse burst followed by a 562.5-µs space, with a total
transmit time of 1.125 ms.

•	Logic '1' — a 562.5-µs pulse burst followed by a 1.6875-ms space, with a total
transmit time of 2.25 ms.

Figure 19.4 shows the data transmission protocol. The image was taken from the site:
https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol).

When a key is pressed on the remote controller, the message transmitted consists of the
following, in the order given:

•	a 9-ms leading pulse burst (16 times the pulse burst length used for a logical
data bit)

•	a 4.5-ms space
•	the 8-bit address for the receiving device
•	the 8-bit logical inverse of the address
•	the 8-bit command
•	the 8-bit logical inverse of the command
•	a final 562.5-µs pulse burst to signify the end of message transmission.

Notice from image that it takes:

•	27 ms to transmit both the 16 bits for the address (address + inverse) and the
16 bits for the command (command + inverse). This comes from each of the
16-bit blocks ultimately containing eight '0's and eight '1's — giving (8 * 1.125
ms) + (8 * 2.25 ms).

•	67.5 ms to fully transmit the message frame (discounting the final 562.5 µs
pulse burst that signifies the end of the message).

Mastering the Arduino Uno R4 - UK.indd 313Mastering the Arduino Uno R4 - UK.indd 313 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 314

Fgure 19.4: NEC infrared data transmission.

What is required to receive the IR signal correctly is a program where the duration of the
serial data bits can be measured and then the binary signal can be formed. Fortunately, the
Arduino IDE provides a function called pulseIn() that can be used to measure the duration
of a signal on a GPIO port. The format of this function is:

	 pulseIn(pin, value, timeout)

where, pin is the GPIO pin where the IR receiver output is connected to, value is HIGH
or LOW depending on whether you want to measure the durations of HIGH or LOW signals
respectively, and timeout (optional) specifies the maximum expected pulse duration in
microseconds. The function returns the pulse duration in microseconds as an unsigned
long, or a zero is returned if a timeout occurs.

As an example, the statement dur = pulseIn(5, HIGH) returns the duration of a pulse
(HIGH) on pin 5 in microseconds. You will be using this function in your infrared control
projects in the next sections to decode the data received by the IR receiver diode.

19.5 Project 1: Decoding the IR remote control codes
Description: In this project, you will use the supplied IR receiver diode and remote control
unit to decode the signals sent when a button is pressed on the remote control unit. The
received data will be displayed on the Serial Monitor.

Block diagram: Figure 19.5 shows the block diagram of the project.

Figure 19.5: Block diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 314Mastering the Arduino Uno R4 - UK.indd 314 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 315

Circuit diagram: The circuit diagram of the project is very simple and is shown in Figure
19.6. The output of the IR receiver diode is connected to GPIO 2 of the Arduino Uno R4
Minima. Make sure that the power and ground pins are connected correctly.

Figure 19.6: Circuit diagram of the project.

Program listing: Since there were no infrared libraries compatible with the Arduino Uno
R4 at the time of authoring this book, the IR decoding was done using the first principles
and referring to Figure 19.4. Figure 19.7 shows the program listing (Program: IRTest). At
the beginning of the program, GPIO 2 is defined as the receiver port and is configured as
a digital input. Function IRreceive() is where the IR signal is received and decoded. A for
loop is formed to read 32 pulses. Inside this loop, if the pulse duration is greater than 1000
microseconds, then a 1 is assumed. Bitwise logical OR is used to set a bit after shifting left.
The result is returned in variable code which is displayed on the Serial Monitor.

//--
// INFRARED TRANSMITTER-RECEIVER TEST
// ==================================
//
// In this program the supplied IR receiver and remote control
// transmitter unit are used. The codes sent by the remote control
// when its buttons are pressed are displayed on Serial Monitor
//
// Author: Dogan Ibrahim
// File : IRTest
// Date : July, 2023
//--
#define IRrx 2 // IR rX pin
unsigned long int shft, code = 0;

void setup()
{

Mastering the Arduino Uno R4 - UK.indd 315Mastering the Arduino Uno R4 - UK.indd 315 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 316

 Serial.begin(9600);
 pinMode(IRrx, INPUT); // IR rx is input
}

unsigned long int IRreceive()
{
 while(digitalRead(IRrx) != LOW); // Wait for start (LOW)
 if(pulseIn(IRrx, HIGH, 15000) == 0) return 0; // No start detected

 code = 0;
 for(int i = 0; i < 32; i++) // Receive 32 pulses
 {
 int pulseDuration = pulseIn(IRrx, HIGH, 3000); // Timeout = 3 s
 if(pulseDuration == 0) return 0; // Timeout, exit
 if(pulseDuration > 1000) // 1 detected
 {
 shft = 1;
 shft = shft << i; // Shift left
 code = code | shft;
 }
 }

 while(digitalRead(IRrx) != HIGH); // Stop
 return code;
}

void loop()
{
 unsigned long res = IRreceive();
 if(res != 0) Serial.println(res, HEX); // Display result in hex
}

Figure 19.7: Program: IRTest.

Test Procedure:

•	Make sure that the remote control unit is loaded with a CR2025-type coin
battery.

•	Start the IDE, compile and upload the program.
•	Start the Serial Monitor.
•	Point the remote control unit to the IR receiver.
•	Make a table of the received codes against the buttons pressed on the remote

control unit. Table 19.1 was obtained by the author by pressing some of the
buttons.

Mastering the Arduino Uno R4 - UK.indd 316Mastering the Arduino Uno R4 - UK.indd 316 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 317

Button Pressed Received Code

0 0xE916FF00

1 0xF30CFF00

2 0xE718FF00

3 0xA15EFF00

4 0xF708FF00

5 0xE31CFF00

6 0xA55AFF00

7 0xBD42FF00

8 0xAD52FF00

9 0xB54AFF00

+ 0xEA15FF00

Table 19.1: Buttons pressed and received codes.

Figure 19.8 shows some of the codes displayed on the Serial Monitor.

Figure 19.8: Some of the codes displayed.

Now that you have the IR codes of your remote control unit, you can develop many inter-
esting IR remote control-based projects. A simple project is given in the next section.

19.6 Project 2: Remote relay activation/deactivation
Description: In this project, a relay is added to the project. The operation of the project is
as follows: When button 0 is pressed on the remote control, the relay turns ON. Similarly,
when button 1 is pressed, the relay turns OFF. This way, you can control any device or ap-
pliance remotely by sending codes from the remote control unit.

Block diagram: Figure 19.9 shows the bloc diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 317Mastering the Arduino Uno R4 - UK.indd 317 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 318

Figure 19.9: Block diagram of the project.

Circuit diagram: The relay is connected to port 3 of the development board as shown in
Figure 19.10

Figure 19.10: Circuit diagram of the project.

Program listing: Figure 19.11 shows the program listing (Program: REMOTECTRL). At
the beginning of the program, the IR receiver is assigned to port 2 and RELAY is assigned
to port 3 and the ON and OFF codes are defined as shown in Table 19.1. Inside the set-
up() function, RELAY is configured as output and it is deactivated. Also, the on-board LED
(at port 13) is configured as output and turned OFF. Inside the main program loop, the
program waits to receive code. When button 0 is pressed, the relay is turned ON. Similar-
ly, when button 1 is pressed, the relay is turned OFF. The LED blinks as soon as a code is
received from the remote controller.

//--
// INFRARED REMOTE CONTROL OF A RELAY
// ==================================
//
// In this program the supplied IR receiver and remote control
// transmitter unit are used. A relay is connected to the development
// board. Pressing button 0 activates the relay. Pressing button 1
// deactivates the relay. On-board LED blinks to indicate button press
//
// Author: Dogan Ibrahim
// File : REMOTECTRL
// Date : July, 2023

Mastering the Arduino Uno R4 - UK.indd 318Mastering the Arduino Uno R4 - UK.indd 318 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 319

//--
#define IRrx 2 // IR rX pin
unsigned long int shft, code = 0;

int RELAY = 3; // RELAY at port 3
int LED = 13; // On-board LED
#define ON 0xE916FF00 // RELAY ON code (0)
#define OFF 0xF30CFF00 // RELAY OFF coe (1)

void setup()
{
 pinMode(IRrx, INPUT); // IR rx is input
 pinMode(RELAY, OUTPUT); // RELAY is output
 digitalWrite(RELAY, LOW); // Deactivate relay
 pinMode(LED, OUTPUT); // LED is output
 digitalWrite(LED, LOW); // LED OFF
}

unsigned long int IRreceive()
{
 while(digitalRead(IRrx) != LOW); // Wait for start (LOW)
 if(pulseIn(IRrx, HIGH, 15000) == 0) return 0; // No start detected

 code = 0;
 for(int i = 0; i < 32; i++) // Receive 32 pulses
 {
 int pulseDuration = pulseIn(IRrx, HIGH, 3000); // Timeout = 3 s
 if(pulseDuration == 0) return 0; // Timeout, exit
 if(pulseDuration > 1000) // 1 detected
 {
 shft = 1;
 shft = shft << i; // Shift left
 code = code | shft;
 }
 }

 while(digitalRead(IRrx) != HIGH); // Stop
 return code;
}

void loop()
{
 unsigned long res = IRreceive();
 if(res != 0)
 {
 if(res == ON) digitalWrite(RELAY, HIGH); // RELAY ON

Mastering the Arduino Uno R4 - UK.indd 319Mastering the Arduino Uno R4 - UK.indd 319 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 320

 else if(res == OFF)digitalWrite(RELAY, LOW); // RELAY OFF

 digitalWrite(LED, HIGH); // Flash LED
 delay(500);
 digitalWrite(LED, LOW);
 }
}

Figure 19.11: Program: REMOTECTRL.

19.7 Project 3: Infrared remote stepper motor control
Description: In this project, the number of revolutions of a stepper motor (28BYJ-48) is
controlled using the IR receiver and remote control unit. For example, pressing 5 rotates
the motor by 5 full revolutions. Pressing 12 rotates the motor by 12 full revolutions, etc.
Numbers are entered from the remote control unit and must be terminated with the +
button. For example, to rotate 5 times enter 5+, similarly, to rotate 15 times, press 15+.
It is assumed that only clockwise rotation is required (anticlockwise rotation can easily be
added if required).

Block diagram: Figure 19.12 shows the block diagram of the project.

Figure 19.12: Block diagram of the project.

Circuit diagram: The stepper motor is connected to port pins 8, 9, 10, and 11. The IR
receiver is connected to port 2 as in the previous project. Figure 19.13 shows the circuit
diagram.

Figure 19.13: Circuit diagram of the project.

Mastering the Arduino Uno R4 - UK.indd 320Mastering the Arduino Uno R4 - UK.indd 320 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 321

Program listing: Figure 19.14 shows the program listing (Program: IRSTEPPER). At the
beginning of the program, the remote control, and then the stepper motor details are giv-
en. The IR receiver is connected to port 2. Stepper motor connections must be in the form
IN1-IN3-IN2-IN4 as shown in the program. Then the remote control codes are defined for
all the numbers 0 to 9 and for the + sign which is used as the terminator. Motor steps per
revolution is set to 2048 (it is actually 2038 but 2048 seems to give more accurate results).
Inside the setup() function, the motor speed is set to 9 RPM (setting to higher or lower
values may give incorrect rotations). Function GetNumber() receives the IR code as its
argument and returns the numeric value of the button pressed on the remote control unit.
Inside the main program loop, the text Ready… is displayed when the program is ready
to read a number. The number entered by the user is displayed. When the + terminator
button is pressed, the required number of revolutions is displayed and the motor starts ro-
tating. The total number of steps sent to the motor is calculated by multiplying the required
number of revolutions (Sum) by the StpsPerRev.

//--
// REMOTE IR STEPPER MOTOR CONTROL
// ===============================
//
// In this program the supplied IR receiver and remote control
// transmitter unit are used to control the number of full rotations
// of the stepper motor
//
// Author: Dogan Ibrahim
// File : IRSTEPPER
// Date : July, 2023
//--
#include <Stepper.h>
const int StpsPerRev = 2048; // Steps per rev
Stepper MyStepper = Stepper(StpsPerRev,8,10,9,11);

#define IRrx 2 // IR rX pin
unsigned long int shft, code = 0;

//
// IR remote control codes
//
#define N0 0xE916FF00 // Code 0
#define N1 0xF30CFF00 // Code 1
#define N2 0xE718FF00 // Code 2
#define N3 0xA15EFF00 // Code 3
#define N4 0xF708FF00 // Code 4
#define N5 0xE31CFF00 // Code 5
#define N6 0xA55AFF00 // Code 6
#define N7 0xBD42FF00 // Code 7
#define N8 0xAD52FF00 // Code 8

Mastering the Arduino Uno R4 - UK.indd 321Mastering the Arduino Uno R4 - UK.indd 321 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 322

#define N9 0xB54AFF00 // Code 9
#define PLUS 0xEA15FF00 // Code +

void setup()
{
 pinMode(IRrx, INPUT); // IR rx is input
 MyStepper.setSpeed(9); // Speed=9 RPM
 Serial.begin(9600);
}

//
// This function returns the numeric value of the pressed button
//
int GetNumber(int m)
{
 switch(m)
 {
 case N0: // 0 pressed
 return 0;
 break;
 case N1: // 1 pressed
 return 1;
 break;
 case N2: // 2 pressed
 return 2;
 break;
 case N3: // 3 pressed
 return 3;
 break;
 case N4: // 4 pressed
 return 4;
 break;
 case N5: // 5 pressed
 return 5;
 break;
 case N6: // 6 pressed
 return 6;
 break;
 case N7: // 7 pressed
 return 7;
 break;
 case N8: // 8 pressed
 return 8;
 break;
 case N9: // 9 pressed
 return 9;

Mastering the Arduino Uno R4 - UK.indd 322Mastering the Arduino Uno R4 - UK.indd 322 13-09-2023 11:1413-09-2023 11:14

Chapter 19 ● Infrared Receiver and Remote Controller

● 323

 break;
 case PLUS: // + pressed
 return -1;
 break;
 }
}

//
// Receive a code and decode it
//
unsigned long int IRreceive()
{
 while(digitalRead(IRrx) != LOW); // Wait for start (LOW)
 if(pulseIn(IRrx, HIGH, 15000) == 0) return 0; // No start detected

 code = 0;
 for(int i = 0; i < 32; i++) // Receive 32 pulses
 {
 int pulseDuration = pulseIn(IRrx, HIGH, 3000); // Timeout = 3 s
 if(pulseDuration == 0) return 0; // Timeout, exit
 if(pulseDuration > 1000) // 1 detected
 {
 shft = 1;
 shft = shft << i; // Shift left
 code = code | shft;
 }
 }

 while(digitalRead(IRrx) != HIGH); // Stop
 return code;
}

void loop()
{
 int Sum = 0;
 Serial.println("Ready...");
 while(1)
 {
 unsigned long res = IRreceive(); // Receive code
 if(res != 0)
 {
 int N = GetNumber(res); // Get a number
 Serial.println(N);
 if(N == -1)break; // If terminated
 Sum = Sum * 10 + N; // Required number
 }

Mastering the Arduino Uno R4 - UK.indd 323Mastering the Arduino Uno R4 - UK.indd 323 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 324

 }
 Serial.print("Number of revolutions: ");
 Serial.println(Sum);
 MyStepper.step(Sum * StpsPerRev);
 delay(100);
}

Figure 19.14: Program: IRSTEPPER.

Mastering the Arduino Uno R4 - UK.indd 324Mastering the Arduino Uno R4 - UK.indd 324 13-09-2023 11:1413-09-2023 11:14

Index

● 325

Index

A
Accurate clock	 149
analogWave	 242
Animation	 267
Arduino Web Editor	 23
ATmega328P	 14
Attachinterrupt	 82

B
Binary counting	 72
Blanking leading zeroes	 124
Blinking LED	 59
Bluetooth	 276
Bluetooth BLE	 277
Boards manager	 25
Builtin RTC	 216
Buzzer	 174

C
CAN bus	 292
CAN bus node	 295
CAN bus arbitration	 297
CAN bus transceivers	 300
CAN connectors	 298
Chaser LEDs	 67
Cortex-M4	 15
Creating images	 262
Current sinking	 61
Current sourcing	 61
Custom LCD characters	 144

D
DAC	 241
Darkness reminder	 164
DHT11	 181
Displaying shapes	 227
Door security lock	 203
DS1302	 207

E
EEPROM	 248
Espressif S3	 15
External interrupt	 80

F
Factorial	 54
Flame sensor	 177

H
HID	 14
Humidity sensor	 180

I
I2C bus	 136
I2C LCD	 137
I2C ports	 137
Infrared controller	 311
Infrared receiver	 311
Integer calculator	 198

J
Joystick	 221

K
Keypad	 194

L
LCD	 136
LCD dice	 154
LDR	 146
LED dimming	 255
LED matrix	 226, 260
LM35	 157

M
Matrices	 56
Melody maker	 184
MFRC522	 189
Multiplexed LED	 114

P
Periodic interrupt	 218
Println	 27
PWM	 248

Q
Quadratic equation	 50

Mastering the Arduino Uno R4 - UK.indd 325Mastering the Arduino Uno R4 - UK.indd 325 13-09-2023 11:1413-09-2023 11:14

Mastering the Arduino Uno R4

● 326

R
RA4M1	 18
Random flashing	 74, 103
Reaction timer	 83, 128
Renesas RA4M1	 14
RFID reader	 187
RTC	 207

S
Scrolling text	 142
Serial communication	 280
Serial monitor	 26
Servo motor	 231
Seven segment LED	 109
Shift register	 100
Simulator	 285
Sine wave	 243
Sketch	 23
Sound detection	 175
Square wave	 241
Stepper motor	 237

T
Tag ID	 187
TCP	 269
Temperature controller	 161
Tilt detection	 167
Timer interrupt	 119
Time stamping	 213
Traffic lights	 89, 94

U
UDP	 269
USB-C	 14

V
Vibration tilt sensor	 167
Voltmeter	 160

W
Watchdog timer	 120
Water level controller	 172
Water level sensor	 169
WiFi	 257
Wiring	 12
WokWi	 286

Mastering the Arduino Uno R4 - UK.indd 326Mastering the Arduino Uno R4 - UK.indd 326 13-09-2023 11:1413-09-2023 11:14

Dogan Ibrahim

Mastering the
Arduino Uno R4

Programming and Projects for the Minima and WiFi

Mastering the
Arduino Uno R4
Programming and Projects
for the Minima and WiFi

Based on the low-cost 8-bit ATmega328P processor, the Arduino Uno
R3 board is likely to score as the most popular Arduino family member
so far, and this workhorse has been with us for many years. Recently, the
new Arduino Uno R4 was released, based on a 48-MHz, 32-bit Cortex-M4
processor with a huge amount of SRAM and flash memory. Additionally,
a higher-precision ADC and a new DAC are added to the design. The
new board also supports the CAN Bus with an interface.

Two versions of the board are available: Uno R4 Minima, and Uno R4
WiFi. This book is about using these new boards to develop many diffe-
rent and interesting projects with just a handful of parts and external
modules, which are available as a kit from Elektor. All projects described
in the book have been fully tested on the Uno R4 Minima or the Uno R4
WiFi board, as appropriate.

The project topics include the reading, control, and driving of many compo-
nents and modules in the kit as well as on the relevant Uno R4 board,
including

	> LEDs
	> 7-segment displays
(using timer interrupts)

	> LCDs
	> Sensors
	> RFID Reader
	> 4×4 Keypad
	> Real-time clock (RTC)
	> Joystick
	> 8×8 LED matrix

	> Motors
	> DAC
(Digital-to-analog converter)

	> LED matrix
	> WiFi connectivity
	> Serial UART
	> CAN bus
	> Infrared controller and receiver
	> Simulators

… all in creative and educational ways with the project operation and
associated software explained in great detail.

Prof Dogan Ibrahim has a BSc
(Hons) degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing and Microprocessors.
Dogan has worked in many
organizations and is a Fellow of
the Institution of Engineering and
Technology (IET) in the UK and
is a chartered electrical engineer.
Dogan is an author of over 100
technical books and over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields. Dogan is a
certified Arduino professional and
has many years of experience with
almost all types of microprocessors
and microcontrollers.

All programs discussed in this
guide are contained in an archive
you can download free of charge
from the Elektor website. Head to
elektor.com/books and enter the
book title in the search box.

M
astering the A

rduino U
no R4 • D

ogan Ibrahim

Elektor International Media
www.elektor.com

books booksbooks books

Cover Mastering the Arduino Uno - UK.indd Alle pagina'sCover Mastering the Arduino Uno - UK.indd Alle pagina's 13-09-2023 11:2013-09-2023 11:20

	Search…
	Mastering the Arduino Uno R4
	All rights reserved.
	Contents
	Preface

	1 ● The Arduino Uno R4
	1.1 Overview
	1.2 The Arduino Uno R4 against Uno R3
	1.3 The Arduino Uno R4 Minima hardware
	1.4 The Arduino Uno R4 Projects Kit

	2 ● Arduino Uno R4 Program Development
	2.1 Overview
	2.2 Installing the Arduino IDE 2.1.0
	2.3 Software-only programs
	2.3.1 Example 1: Sum of integer numbers
	2.3.2 Example 2: Table of squares
	2.3.3 Example 3: Volume of a cylinder
	2.3.4 Example 4: Centigrade to Fahrenheit
	2.3.5 Example 5: Times table
	2.3.6 Example 6: Table of trigonometric sine
	2.3.7 Example 7: Table of trigonometric sine, cosine and tangent
	2.3.8 Example 8: Integer calculator
	2.3.9 Example 9: Dice
	2.3.10 Example 10: Floating point calculator
	2.3.11 Example 11: Binary, octal, hexadecimal
	2.3.12 Example 12: String functions
	2.3.13 Example 13: Initializing an array
	2.3.14 Example 14: Character functions
	2.3.15 Example 15: Solution of a quadratic equation
	2.3.16 Example 16: Lucky day of the week
	2.3.17 Example 17: Factorial of a number
	2.3.18 Example 18: Add two square matrices

	3 ● Hardware Projects with LEDs
	3.1 Overview
	3.2 Project 1: Blinking LED – using the on-board LED
	3.3 Project 2: Blinking LED – using an external LED
	3.4 Project 3: LED flashing SOS
	3.5 Project 4: Alternately blinking LEDs
	3.6 Project 5: Chaser-LEDs
	3.7 Project 6: Chasing LEDs 2
	3.8 Project 7: Binary counting LEDs
	3.9 Project 8: Random flashing LEDs — Christmas lights
	3.10 Project 9: Button controlled LED
	3.11 Project 10: Controlling the LED flashing rate — external interrupts
	3.12 Project 11: Reaction timer
	3.13 Project 12: LED color wand
	3.14 Project 13: RGB fixed colors
	3.15 Project 14: Traffic lights
	3.16 Project 15: Traffic lights with pedestrian crossings
	3.17 Project 16: Using the 74HC595 shift register – binary up counter
	3.18 Project 17: Using the 74HC595 shift register — random flashing 8 LEDs
	3.19 Project 18: Using the 74HC595 shift register — chasing LEDs
	3.20 Project 19: Using the 74HC595 shift register — turn ON a specified LED
	3.21 Project 20: Using the 74HC595 shift register — turn ON specified LEDs

	4 ● 7-Segment LED Displays
	4.1 Overview
	4.2 7-Segment LED display structure
	4.3 Project 1: 7-Segment 1-digit LED counter
	4.4 Project 2: 7-Segment 4-digit multiplexed LED display
	4.5 Project 3: 7-Segment 4-digit multiplexed LED display counter – timer interrupts
	4.6 Project 4: 7-Segment 4-digit multiplexed LED display counter — blanking leading zeroes
	4.7 Project 5: 7-Segment 4-digit multiplexed LED display — reaction timer
	4.8 Project 6: Timer interrupt blinking on-board LED

	5 ● Liquid Crystal Displays
	5.1 Overview
	5.2 The I2C bus
	5.3 I2C ports of the development board
	5.4 I2C LCD
	5.5 Project 1: Display text on the LCD
	5.6 Project 2: Scrolling text on the LCD
	5.7 Project 3: Display custom characters on the LCD
	5.8 Project 4: LCD based conveyor belt goods counter
	5.9 Project 5: LCD based accurate clock using timer interrupts
	5.10 Project 6: LCD dice

	6 ● Sensors
	6.1 Overview
	6.2 Project 1: Analog temperature sensor
	6.3 Project 2: Voltmeter
	6.4 Project 3: On/off temperature controller
	6.5 Project 4: Darkness reminder – using a light-dependent resistor (LDR)
	6.6 Project 5: Tilt detection
	6.7 Water level sensor
	6.7.1 Project 6: Displaying water level
	6.7.2 Project 7: Water level controller
	6.7.3 Project 8: Water flooding detector with buzzer

	6.8 Project 9: Sound detection sensor — control the relay by clapping hands
	6.9 Project 10: Flame sensor — fire detection with relay output
	6.10 Project 11: Temperature and humidity display
	6.11 Project 12: Generating musical tones — melody maker

	7 ● The RFID Reader
	7.1 Overview
	7.2 Project 1: Finding the Tag ID
	7.3 Project 2: RFID door lock access with relay

	8 ● The 4×4 Keypad
	8.1 Overview
	8.2 Project 1: Display the pressed key code on the Serial Monitor
	8.3 Project 2: Integer calculator with LCD
	8.4 Project 3: Keypad door security lock with relay

	9 ● The Real-Time Clock (RTC) Module
	9.1 Overview
	9.2 The supplied RTC module
	9.3 Project 1: RTC with Serial Monitor
	9.4 Project 2: RTC with LCD
	9.5 Project 3: Temperature and humidity display with time stamping
	9.6 Using the built-in RTC
	9.6.1 Project 4: Setting and displaying the current time
	9.6.2 Project 5: Periodic interrupt every 2 seconds

	10 ● The Joystick
	10.1 Overview
	10.2 The joystick
	10.3 Project 1 — Reading analog values from the joystick

	11 ● The 8×8 LED Matrix
	11.1 Overview
	11.2 The supplied 8×8 LED matrix
	11.3 Project 1: Displaying shapes

	12 ● Motors: Servo and Stepper
	12.1 Overview
	12.2 The servo motor
	12.2.1 Project 1: Test-rotate the servo
	12.2.2 Project 2: Servo sweep
	12.2.3 Project 3: Joystick-controlled servo

	12.3 The stepper motor
	12.3.1 Project 4: Rotate the motor clockwise and then anticlockwise

	13 ● The Digital To Analog Converter (DAC)
	13.1 Overview
	13.2 Project 1: Generating a square wave with 2 V amplitude
	13.3 Generating sine wave – using the analogWave library
	13.3.1 Project 2: Generate a sine wave
	13.3.2 Project 3: Sine wave sweep frequency generator
	13.3.3 Project 4: Generate sine wave whose frequency changes with potentiometer
	13.3.4 Project 5: Generate a square wave with frequency of 1 kHz and amplitude of 1 V

	14 ● Using the EEPROM, the Human Interface Device, and PWM
	14.1 Overview
	14.2 The EEPROM memory
	14.3 Human Interface Device (HID)
	14.4 Project 1: Keyboard control to launch Windows programs
	14.5 The Pulse Width Modulation (PWM)
	14.5.1 PWM channels of the Arduino Uno R4
	14.5.2 Project 2: LED dimming using PWM

	15 ● The Arduino Uno R4 WiFi
	15.1 Overview
	15.2 The LED matrix
	15.2.1 Project 1: Using LED matrix 1 — creating a large + shape
	15.2.2 Project 2: Creating images by setting bits
	15.2.3 Project 3: Using LED matrix 2 — creating a large + shape
	15.2.4 Project 4: Animation — displaying a word

	15.3 Using the WiFi
	15.3.1 UDP and TCP
	15.3.2 UDP communication
	15.3.3 TCP communication
	15.3.4 Project 5: Controlling the Arduino Uno R4 WiFi on-board LED from a smartphone using UDP

	15.4 Bluetooth
	15.4.1 Bluetooth BLE
	15.4.2 Bluetooth BLE Software Model

	16 ● Serial Communications
	16.1 Overview
	16.2 Project 1: Receiving ambient temperature from an Arduino Uno R3

	17 ● Using an Arduino Uno Simulator
	17.1 Why simulation?
	17.2 The Wokwi simulator
	17.2.1 Project 1: A simple project simulation — flashing LED
	17.2.2 Project 2: Displaying text on LCD
	17.2.3 Project 3: LCD seconds counter

	18 ● The CAN bus
	18.1 Overview
	18.2 The CAN bus
	18.2.1 CAN bus termination
	18.2.2 CAN bus data rate
	18.2.3 Cable stub length
	18.2.4 CAN Bus node
	18.2.5 CAN bus signal levels
	18.2.6 CAN_H voltage
	18.2.7 The CAN_L voltage
	18.2.8 Bus arbitration
	18.2.9 Bus transceiver
	18.2.10 CAN connectors

	18.3 Arduino Uno R4 CAN bus interface
	18.3.1 CAN bus transceivers

	18.4 Project 1: Arduino Uno R4 WiFi to Arduino Uno R4 Minima CAN bus communication
	18.5 Project 2: Sending the temperature readings over the CAN bus

	19 ● Infrared Receiver and Remote Controller
	19.1 Overview
	19.2 The supplied infrared receiver
	19.3 The supplied infrared remote control transmitter unit
	19.4 Operation of an infrared remote control system
	19.5 Project 1: Decoding the IR remote control codes
	19.6 Project 2: Remote relay activation/deactivation
	19.7 Project 3: Infrared remote stepper motor control

	Index

